2016 Nobel Prize in Chemistry for Molecular Machines

The Royal Swedish Academy of Sciences has decided to award Jean-Pierre Sauvage, Sir James Fraser Stoddart and Bernard (Ben) L. Feringa the Nobel Prize in Chemistry 2016 “for the design and synthesis of molecular machines”. This is a high recognition for supramolecular chemistry utilizing building blocks of host-guest complexes including also cyclodextrin complexes.

The molecular machines mimic the movements of machines in a highly miniaturized scale. They need external fueling which is usually light or other energy. The first approach was topological entanglement (interlocked molecular assemblies). The building blocks are not covalently bound together but are entangled through loops and stoppers. Catenanes consisting of two interlocked rings and rotaxanes based on a ring threaded over an axle with stoppers are the main groups (Fig. 1).

Dramatic, reversible changes in the catenanes’ molecular shape were observed upon decomplexation and recomplexation of the metal coordination entities with Cu(I) as first examples of translational isomerism [3].

The group of Sir James Fraser Stoddart (University of Sheffield, UK) synthesized paraquat cyclophane structure threaded around an axle containing two hydroquinol units [4] (Fig. 2). The resulting rotaxane cyclophane ring could be shown to act as a molecular shuttle, able to move between the two hydroquinol stations on the axle. The trigger of the motion is electrochemical oxidation-reduction or pH change.
In parallel with the development of interlocked structures, systems based on isomerizable unsaturated bonds able to rotate unidirectionally in a controlled manner were synthesized. One of the first approaches published by Feringa’s group (University of Groningen, the Netherlands) is illustrated in Fig. 3 [5]. Taking together 4 such motors into one structure resembling to a 4-wheeled car, this group constructed the prototype of a ‘nanocar’ (four-wheeled molecule) [6].

Both linear and rotary motion was achieved on molecular scale providing artificial molecular machines built up from shuttles and switches (motors and pumps) where supplies of energy in the form of chemical fuel, electrochemical potential and light activation become a minimum requirement for them to function away from equilibrium [8].

Activity of Nobel laureates with cyclodextrins

According to Scopus all the three Nobel-Prize laureates have abundantly published their findings (Table 1). Although all of them mentioned CDs in their reviews or introduction of their research papers, only Stoddart was active in the development of novel structures including CD as building block.
Table 1 Publications statistics (Scopus, accessed on 24 November 2016)

<table>
<thead>
<tr>
<th></th>
<th>No. of papers</th>
<th>No. of papers mentioning CDs</th>
<th>CDs in the title, abstract or keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoddart, J.F.</td>
<td>904</td>
<td>279</td>
<td>59</td>
</tr>
<tr>
<td>Sauvage, J.P.</td>
<td>533</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>Feringa, B.J.</td>
<td>739</td>
<td>26</td>
<td>0</td>
</tr>
</tbody>
</table>

Stoddart was born in 1942 and studied at Edinburgh University. Later on he made research at various universities in the US, UK and Canada. He was made a Knight Bachelor by Her Majesty Queen Elizabeth II. in 2007 for his services in chemistry and molecular nanotechnology.

Sir J.F. Stoddart was identified as one of the most-cited chemists in 1995–2005 period with over 11000 citations [9]. In October 2016 he had 83941 citations, 35439 since 2011 (Google Scholar, accessed on 20 November, 2016) with 7 papers of over 1000 citations. The three most cited papers are:

- Artificial molecular machines (Angew. Chemie [10], No. of citations: 2102)
- Self-assembly in natural and unnatural systems (Angew. Chemie [11], No. of citations: 1919)
- Electronically configurable molecular-based logic gates (Science [4], No. of citations: 1823)

Stoddart started to use the following expressions in his papers: switchable molecular devices [12], artificial molecular pumps [13], supramolecular devices, mechanically linked polymers, molecular elevators [14], molecular computers, molecular electronics [15], molecular logic gates [16], etc.

His CD-related activity covered also other topics, such as gold recovery, catalysis, metal-organic frameworks, sensors, etc.

Molecular machines with CDs

Preparation of interlocked systems

The very first attempt to thread CD on an axle molecule was a catenane prepared by the group of Friedrich Cramer (Fig. 4) preceding the works of the present Nobel laureates.

![Fig. 4. Scheme of the very first catenane using αCD prepared by Cramer’s group published in 1958 [17]](image-url)
The very first *rotaxane* containing CD was prepared by Hiroshi Ogino (Tohoku University, Japan) utilizing the non-covalent interaction between α,ω-diaminoalkenes and CD using CoCl(ethylenediamine)$_2$ bulky groups as stoppers [18].

The first *polyrotaxanes* containing several CDs threaded on an axle molecule was published in the same year (in 1992) by Harada et al. and Wenz et al. (Fig. 5) [19, 20]. Harada used diamine-terminated polyethylene glycol and αCD to get a molecular necklace attaching dinitrofluorobenzene groups as stoppers, while Wenz stringed αCD rings on polyiminooligomethylene chains and terminated the chains with nicotinoyl groups. However, these systems did not show controllable motion.

![Fig. 5. Scheme of polyrotaxanes](image)

Stimuli-responsive molecular devices and molecular machines with CDs

Typical photoswitchable molecular devices based on *cis–trans* photoisomerization of azobenzene moity (Fig. 6) were prepared by several groups [21, 22]. Light-driven rotaxane molecular shuttles and nanovalves containing αCD and azobenzene unit were constructed. The *cis–trans* photoisomerization of azobenzene moiety induces reversible motion of the CD ring on the effect of UV (hv) and visible (hv1) irradiation (Fig. 6 and 7) [23].

![Fig. 6. Photoisomerization of azobenzene](image)

CD selectively binds to *trans*-azobenzene, which is less hydrophilic than the *cis* isomer. Upon irradiation the *trans*-azobenzene is transformed into the *cis* form causing αCD to unthread. Thermal relaxation allows *cis*-azobenzene to transform back to *trans* isomer and αCD to rebind.
Various other stimuli-responsive systems have been published. For instance, pH-responsive materials (Fig. 8) [24], redox-switchable molecular machines [25], etc. Some recent reviews give detailed overview on such systems [26–30].

It is a great honor to the entire cyclodextrin society of the world that molecular machines were selected for 2016 Nobel Prize, a field of supramolecular chemistry including advances in cyclodextrin chemistry.
References

Éva Fenyvesi
CycloLab Cyclodextrin R&D Laboratory, Ltd.
Budapest, HUNGARY
BIBLIOGRAPHY & KEYWORDS

1. CDs: Derivatives, Production, Enzymes, Toxicity

Caltabiano, A. M.
Quantitation of sulfobutyl ether-β-cyclodextrin (Captisol™) in Vestipitant IV solution by liquid chromatography with ultraviolet (UV) detection
Cyano-modified silica stationary phase column, Copper(II) acetate, Detection reagent
Journal of Pharmaceutical and Biomedical Analysis, 2016, 118, 276-283; DOI:10.1016/j.jpba.2015.10.045

Chmurski, K.; Stepniak, P.; Jurczak, J.
Long-chain-linked β-cyclodextrin dimers: Synthesis and relationship between reactivity and inclusion complex formation
Click-chemistry, Self-complexation via a glucose unit inversion
Carbohydrate Polymers, 2016, 138, 8-15; DOI:10.1016/j.carbpol.2015.11.054

Do, V. H.; Tran, P. L.; Ni, L.; Park, K. H.
A continuous coupled spectrophotometric assay for debranching enzyme activity using reducing end-specific α-glucosidase
Maltodextrin glucosidase, Glucose oxidase/peroxidase, Maltodextrin-branched β-cyclodextrin
Analytical Biochemistry, 2016, 492, 21-26; DOI:10.1016/j.ab.2015.09.008

Ito, S.; Kogame, C.; Akashi, M.; Kida, T.
Facile synthesis of novel cyclodextrin dimer capsules and their inclusion ability towards aromatic guests in a nonpolar solvent
Heptakis(6-O-tert-butylidimethylsilyl)-β-cyclodextrin, Xylylene linkers, Phenol, Aniline

Lee, B.-H.; Hamaker, B. R.
Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases
Human pancreatic α-amylase, Digestion, Linear maltooligosaccharides, Postprandial glycemic response, Starch

Li, Z.; Huang, M.; Gu, Z.; Holler, T. P.; Cheng, L.; Hong, Y.; Li, C.
Asp577 mutations enhance the catalytic efficiency of cyclodextrin glycosyltransferase from Bacillus circulans
Cyclization reaction, β-Cyclodextrin, Calcium-binding site
Cloning, heterologous expression, and enzymatic characterization of a novel glucoamylase GlucaM from *Corallococcus* sp. strain EGB

Glycosyl hydrolase family, α-Cyclodextrin, Starch

Protein Expression and Purification, 2017, 129, 122-127; DOI:10.1016/j.pep.2015.06.009

Rahmati, P.; Sajedi, R. H.; Zamani, P.; Rahmani, H.; Khajeh, K.

Allosteric properties of Geobacillus maltogenic amylase

Cooperativity, Hill constant, α-CD, β-CD, γ-CD

Rakmai, J.; Cheirsilp, B.

Continuous production of β-cyclodextrin by cyclodextrin glycosyltransferase immobilized in mixed gel beads: Comparative study in continuous stirred tank reactor and packed bed reactor

Continuous stirred-tank reactor (CSTR), Enzyme bioreactors, Immobilised enzymes, Kinetic parameters

Wu, S.; Lu, M.; Chen, J.; Fang, Y.; Wu, L.; Xu, Y.; Wang, S.

Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium pullulans

Glucose, Maltose, Isomaltose, Maltotriose, Maltooligosaccharides

International Journal of Biological Macromolecules, 2016, 82, 740-743; DOI:10.1016/j.ijbiomac.2015.09.075

Yang, X.; Qiao, C.; Li, Y.; Li, T.

Dissolution and resourcfulization of biopolymers in ionic liquids

Cellulose, Starch, Chitosan, β-Cyclodextrin, Lignin, Proteins, Regeneration

Reactive and Functional Polymers, 2016, 100, 181-190; DOI:10.1016/j.reactfunctpolym.2016.01.017

2. CD complexes: Preparation, Properties in solution and in solid phase, Specific guest

Abdel-Shafi, A. A.; Ismail, M. A.; Al-Shihry, S. S.

Effect of solvent and encapsulation in β-cyclodextrin on the photophysical properties of 4-[5-(thiophen-2-yl)furan-2-yl]benzamidine

Bichalcophene derivative, Kamlet–Taft relationship, Hydrogen bonding, Inclusion complexes, Excited state decay, Dual fluorescence

Cyprych, K.; Janeczko, M.; Rau, I.; Kajzar, F.; Mysliwiec, J.

Collagen network as the scaffold for spontaneously distributed optical resonators

Random lasing, α-Cyclodextrin, Rhodamine 6G

Organic Electronics, 2016, 39, 100-104; DOI:10.1016/j.orgel.2016.09.032

Filho, C. M.; Verissimo, L. M.; Valente, A. J.; Ribeiro, A. C.

Limiting diffusion coefficients of sodium octanoate, and octanoic acid in aqueous solutions without and with α-cyclodextrin

Stokes–Einstein equation, Hydrodynamic radii

The Journal of Chemical Thermodynamics, 2016, 94, 234-237; DOI:10.1016/j.jct.2015.11.013

Horský, J.; Walterová, Z.

Polypseudorotaxanes between α-cyclodextrin and poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol) copolymers studied by MALDI-TOF mass spectrometry

Block length selective process, Reverse pluronics

European Polymer Journal, 2016, 74, 256-263; DOI:10.1016/j.eurpolymj.2015.11.037

Li, S.; Zhai, Y.; Yan, J.; Wang, L.; Xu, K.; Li, H.

Effect of preparation processes and structural insight into the supramolecular system: Bisacodyl and β-cyclodextrin inclusion complex

Co-crystallization, Co-evaporation, Co-grinding, Characterization, Molecular modeling

Materials Science and Engineering: C, 2016, 58, 224-232; DOI:10.1016/j.msec.2015.08.036

Liu, B.; Zeng, J.; Chen, C.; Liu, Y.; Ma, H.; Mo, H.; Liang, G.

Interaction of cinnamic acid derivatives with β-cyclodextrin in water: Experimental and molecular modeling studies

Effects of the substituent groups in the benzene ring, Caffeic acid, Ferulic acid, p-Coumaric acid, Inclusion complex, ONIOM calculations

Food Chemistry, 2016, 194, 1156-1163; DOI:10.1016/j.foodchem.2015.09.001

Pal, A.; Soni, S.

Apparent molar volumes and compressibilities of α- and β-cyclodextrin in aqueous sulfamethoxazole at different temperatures

Infinite dilution, Pairwise and triplet interaction coefficients, Apparent molar adiabatic compressibility

Journal of Molecular Liquids, 2016, 213, 1-7; DOI:10.1016/j.molliq.2015.10.029

Prochowicz, D.; Kornowicz, A.; Justyniak, I.; Lewiński, J.

Metal complexes based on native cyclodextrins: Synthesis and structural diversity

Review, Intra- and/or intermolecular hydrogen bonds, Supramolecular chemistry

Varghese, B.; Al-Busafi, S. N.; Suliman, F. O.; Al-Kindy, S. M.

Tuning the constrained photophysics of a pyrazoline dye 3-naphthyl-1-phenyl-5-(4-carboxyphenyl)-2-pyrazoline inside the cyclodextrin nanocavities: A detailed insight via experimental and theoretical approach

Intramolecular charge transfer, Benesi-Hildebrand equation, Complexation, Fluorescence

Wang, L.-F.

Application of response surface methodology for exploring β-cyclodextrin effects on the decoloration of spiropyran complexes

Zwitterionic structure, Photomerocynine, Spiropyran/β-cyclodextrin polymer, Quantum chemistry calculation

3. CDs in Drug Formulation

Budesonide-hydroxypropyl-β-cyclodextrin inclusion complex in binary poloxamer 407/403 system for ulcerative colitis treatment: A physico-chemical study from micelles to hydrogels

Phase solubility studies, Sol-gel phase transition

Colloids and Surfaces B: Biointerfaces, 2016, 138, 138-147; DOI:10.1016/j.colsurfb.2015.11.048

Anirudhan, T. S.; Divya, P. L.; Nima, J.

Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin

Curcumin, Magnetic nanoparticles, Cytotoxicity

Chemical Engineering Journal, 2016, 284, 1259-1269; DOI:10.1016/j.cej.2015.09.057

Aytac, Z.; Kusku, S. I.; Durgun, E.; Uyar, T.

Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility

Electrospinning, Polyacrylic acid, Modelling, Phase solubility, Antioxidant activity, Photostability

Food Chemistry, 2016, 197, Part A, 864-871; DOI:10.1016/j.foodchem.2015.11.051

Co-solubilization of lamotrigine by complexation and micellization in binary solvent mixtures

Sodium lauryl sulfate, Binary solvent mixture, Jouyban-Acree model

Chemical Engineering Research and Design, 2016, 105, 64-70; DOI:10.1016/j.cej.2015.10.037
Braga, M.; Martini, M.; Pickholz, M.; Yokaichiya, F.; Franco, M.; Cabeça, L.; Guilherme, V.; Silva, C.; Limia, C.; de Paula, E.

Clonidine complexation with hydroxypropyl-beta-cyclodextrin: From physicochemical characterization to in vivo adjuvant effect in local anesthesia

Local anesthetics, Intermolecular hydrogen bonds, Enhanced sensory blockade, Bupivacaine, Drug delivery, Molecular dynamics

Journal of Pharmaceutical and Biomedical Analysis, 2016, 119, 27-36; DOI:10.1016/j.jpba.2015.11.015

Cytoprotection of pancreatic β-cells and hypoglycemic effect of 2-hydroxypropyl-β-cyclodextrin: Sertraline complex in alloxan-induced diabetic rats

Antidepressant in diabetic patients, Bioavailability, Pancreatic islets, Insulin

Chemico-Biological Interactions, 2016, 244, 105-112; DOI:10.1016/j.cbi.2015.11.014

Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy

Gatekeeper β-CD, Arg-Gly-Asp, Peptide ligand, Doxorubicin, Magnetically enhanced accumulation, Theranostic nanoplatform for cancer treatment

Biomaterials, 2016, 76, 87-101; DOI:10.1016/j.biomaterials.2015.10.053

Costoya, A.; Ballarin, F. M.; Llovo, J.; Concheiro, A.; Abraham, G. A.; Alvarez-Lorenzo, C.

HMDSO-plasma coated electrospray fibers of poly(cyclodextrin)s for antifungal dressings

Poly-αCD, Poly-βCD, Wound dressing, Tunable release rate, Poly-(ε-caprolactone), Poly(N-vinylpyrrolidone), Hexamethyldisiloxane, Cyclodextrin polymers, Fluconazole

Desai, S.; Poddar, A.; Sawant, K.

Formulation of cyclodextrin inclusion complex-based orally disintegrating tablet of eslicarbazepine acetate for improved oral bioavailability

Fast onset of anti-epileptic action, Super disintegrants, β-Cyclodextrin, Solid dispersion

Materials Science and Engineering: C, 2016, 58, 826-834; DOI:10.1016/j.msec.2015.09.019

Deshmukh, K.; Tanwar, Y. S.; Sharma, S.; Shende, P.; Cavalli, R.

Functionalized nanosponges for controlled antibacterial and antihypocalcemic actions

Lysozyme impregnated surface-active nanosponges, Peptidoglycan, Controlled release, β-Cyclodextrin

Dora, C. P.; Trotta, F.; Kushwah, V.; Devasari, N.; Singh, C.; Suresh, S.; Jain, S.

Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility,
dissolution rate, *in vitro* cytotoxicity and oral bioavailability

Optimized stoichiometry concentration, Tyrosine kinase inhibitor

Carbohydrate Polymers, 2016, 137, 339-349; DOI:10.1016/j.carbpol.2015.10.080

Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity

Mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin, Biomimetic formulation, Nanoassembly

Carbohydrate Polymers, 2016, 136, 113-120; DOI:10.1016/j.carbpol.2015.08.054

García-González, L.; Yépez-Mulia, L.; Ganem, A.

Effect of β-cyclodextrin on the internalization of nanoparticles into intestine epithelial cells

PLGA nanoparticles, Interaction with mucin, Caco-2 cells

European Journal of Pharmaceutical Sciences, 2016, 81, 113-118; DOI:10.1016/j.ejps.2015.10.012

Gharib, R.; Auezova, L.; Charcosset, C.; Greige-Gerges, H.

Drug-in-cyclodextrin-in-liposomes as a carrier system for volatile essential oil components: Application to anethole

Phospholipids, Photoprotection, HP-β-CD, Double loading

Hu, X.; Tan, H.; Wang, X.; Chen, P.

Surface functionalization of hydrogel by thiol-yne click chemistry for drug delivery

β-CD functionalized hydrogel, Orfloxacin, Thiol-yne photopolymerization

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 297-304; DOI:10.1016/j.colsurfa.2015.11.007

Joseph, L. M.; Chibale, K.; Caira, M. R.

Preparation and physicochemical characterization of an inclusion complex between dimethylated β-cyclodextrin and a drug lead from a new class of orally active antimalarial 3,5-diaryl-2-aminopyridines

Phase-solubility studies, Hydrogen bonds, Oral drug delivery, β-CD, HP-β-CD, DIMEB, Crystal structure, Thermal analysis, X-ray diffractometry

Leclercq, L.; Nardello-Rataj, V.

Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery

Pathogen

European Journal of Pharmaceutical Sciences, 2016, 82, 126-137; DOI:10.1016/j.ejps.2015.11.017
Lenik, J.; Wesoły, M.; Ciosek, P.; Wróblewski, W.

Evaluation of taste masking effect of diclofenac using sweeteners and cyclodextrin by a potentiometric electronic tongue

Sucrose, Lactose, Acesulfame K, Sodium saccharin, 2-Hydroxypropyl-β-cyclodextrin, Ion-selective electrodes

Journal of Electroanalytical Chemistry, 2016, 780, 153-159; DOI:10.1016/j.jelechem.2016.09.017

Li, G.; Yu, N.; Gao, Y.; Tao, Q.; Liu, X.

Polymeric hollow spheres assembled from ALG-g-PNIPAM and β-cyclodextrin for controlled drug release

Sodium alginate-graft-poly(N-isopropylacrylamide), 5-Fluorouracil, Inclusion complexation

International Journal of Biological Macromolecules, 2016, 82, 381-386; DOI:10.1016/j.ijbiomac.2015.11.010

Mahmood, A.; Ahmad, M.; Sarfraz, R. M.; Minhas, M. U.

β-CD based hydrogel microparticulate system to improve the solubility of acyclovir: Optimization through in-vitro, in-vivo and toxicological evaluation

N,N'-methylene bisacrylamide, Ammonium persulfate, pH independent swelling and release, β-Cyclodextrin-g-poly(AMPS) hydrogel microparticles, Free radical polymerization

Journal of Drug Delivery Science and Technology, 2016, 36, 75-88; DOI:10.1016/j.jddst.2016.09.005

Masood, F.

Polymeric nanoparticles for targeted drug delivery system for cancer therapy

Biodegradability, Biocompatibility, Non-toxicity, Prolonged circulation, Poly(lactic-co-glycolic acid) and cyclodextrin based nanoparticles, Site specific target

Materials Science and Engineering: C, 2016, 60, 569-578; DOI:10.1016/j.msec.2015.11.067

Masood, F.; Yasin, T.; Bukhari, H.; Mujahid, M.

Characterization and application of roxithromycin loaded cyclodextrin based nanoparticles for treatment of multidrug resistant bacteria

β-Cyclodextrin, Hydroxypropyl-β-cyclodextrin, Poly-(lactic-co-glycolic acid) (PLGA), Inclusion complex

Materials Science and Engineering: C, 2016, 61, 1-7; DOI:10.1016/j.msec.2015.11.076

Messiad, H.; Yousfi, T.; Djemil, R.; Amira-Guebailia, H.

Modeling of the inclusive complexation of natural drug trans 3,5,3’,4’-tetrahydroxystilbene with β-cyclodextrin

Piceatannol, PM3, HOMO, LUMO, Molecular modeling

Comptes Rendus Chimie, 2016, In Press; DOI:10.1016/j.crci.2016.08.008

Michalska, P.; Wojnicz, A.; Ruiz-Nuño, A.; Abril, S.; Buendia, I.; León, R.

Inclusion complex of ITH12674 with 2-hydroxypropyl-β-cyclodextrin: Preparation,
physical characterization and pharmacological effect

Treatment of brain ischemia, Phase II antioxidant response, Stability
Carbohydrate Polymers, 2017, 157, 94-104; DOI:10.1016/j.carbpol.2016.09.072

Misiuk, W.
Investigation of inclusion complex of HP-γ-cyclodextrin with ceftazidime
Bioavailability, UV/vis, FT-IR, NMR, Molecular docking

Monteil, M.; Lecouvey, M.; Landy, D.; Ruellan, S.; Mallard, I.
Cyclodextrins: A promising drug delivery vehicle for bisphosphonate
Aqueous solubility, Bioavailability, Host-guest complex, Formation constant

Monteiro, A. P.; Rocha, C. M.; Oliveira, M. F.; Gontijo, S. M.; Agudelo, R. R.; Sinisterra, R. D.; Cortés, M. E.
Nanofibers containing tetracycline/β-cyclodextrin: Physico-chemical characterization and antimicrobial evaluation
Electrospun process, Polycaprolactone, Biological absorption, Inclusion compound
Carbohydrate Polymers, 2017, 156, 417-426; DOI:10.1016/j.carbpol.2016.09.059

LAURETH-25 and β-CD improve central transitivity and central pharmacological effect of the GLP-2 peptide
Glucagon-like peptide-2, Nasal formulation, Brain drug delivery and targeting, Polyoxyethylene (25) lauryl ether

Nobusawa, K.; Naito, M.
Chapter 11 - Nanoarchitectonics for cyclodextrin-mediated solubilization and nanoassembly of therapeutic agents
Nanomedicine, Stimuli responsibility, Phototherapeutic applications, Host–guest interaction, Supramolecular manipulation

de Oliveira, C.; Ferreira, N.; Mota, G.
A DFT study of infrared spectra and Monte Carlo predictions of the solvation shell of Praziquantel and β-cyclodextrin inclusion complex in liquid water
Molecular mechanics simulations
Improvement of ursolic and oleanolic acids’ antitumor activity by complexation with hydrophilic cyclodextrins

2-Hydroxypropyl-β-cyclodextrin, 2-Hydroxypropyl-γ-cyclodextrin, Pentacyclic triterpenes, Anti-proliferative, Melanoma

Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex

Positively charged chitosan, Anionic hydroxypropyl-β-cyclodextrin-citric acid polymer, Prolonged release, Antibacterial activity, Controlled release

β-Cyclodextrin complexation as an effective drug delivery system for meropenem

Inclusion complex, Solubility, Stability, Microbiological activity

European Journal of Pharmaceutics and Biopharmaceutics, 2016, 99, 24-34; DOI:10.1016/j.ejpb.2015.10.013

Comparative evaluation of the effect of cyclodextrins and pH on aqueous solubility of apigenin

α-CD, β-CD, γ-CD, SBE-β-CD, HP-β-CD, RM-β-CD, Drug delivery, Solubility improvement, Phase solubility studies, Antioxidant activity

Journal of Pharmaceutical and Biomedical Analysis, 2016, 117, 210-216; DOI:10.1016/j.jpba.2015.08.019

The effect of varying the capping agent of magnetic/luminescent Fe₃O₄-InP/ZnSe core–shell nanocomposite

Multifunctional drug carrier system, 3-Mercaptopropionic acid, Oleylamine, β-Cyclodextrin, Multifunctional, Superparamagnetic, Photoluminescence

Physica B: Condensed Matter, 2016, 480, 156-162; DOI:10.1016/j.physb.2015.09.005
Sebaaly, C.; Charcosset, C.; Stainmesse, S.; Fessi, H.; Greige-Gerges, H.

Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor

Hydroxypropyl-β-cyclodextrin, Double loading technique, Eugenol, Freeze-drying, Scale-up

Carbohydrate Polymers, 2016, 138, 75-85; DOI:10.1016/j.carbpol.2015.11.053

Self-assembled supramolecular hydrogel induced by β-cyclodextrin and ionic liquid-type imidazolium gemini surfactant

Temperature, External stimuli, Hydrogen bonding, Mechanical properties

Enhancement of orofacial antinociceptive effect of carvacrol, a monoterpene present in oregano and thyme oils, by β-cyclodextrin inclusion complex in mice

Morphine, Capsaicin, Glutamate, Orofacial pain, Opioid

Singh, B.; Dhiman, A.; Rajneesh; Kumar, A.

Slow release of ciprofloxacin from β-cyclodextrin containing drug delivery system through network formation and supramolecular interactions

Hydrogels, Sterculia gum comprising of glucuronic acid and galacturonic acid and carbopol, Non-Fickian diffusion mechanism, Korsmeyer-Peppas model

Soo, E.; Thakur, S.; Qu, Z.; Jambhrunkar, S.; Parekh, H. S.; Popat, A.

Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach

Cyclodextrin–resveratrol inclusion complexes, Liposome, Anticancer, Colorectal cancer

Journal of Colloid and Interface Science, 2016, 462, 368-374; DOI:10.1016/j.jcis.2015.10.022

Tan, S.; Ang, C.; Zhao, Y.

Smart therapeutics achieved via host–guest assemblies

Stimuli-triggered drug release, Targeting, Biomedical applications, Calixarenes, Crown ethers, Cucurbiturils, Cyclodextrins, Drug delivery, Pillararenes

Dimethyl-β-cyclodextrin/salazosulfapyridine inclusion complex-loaded chitosan nanoparticles for sustained release
Job’s plot, Toxicity, 2,6-Dimethyl-β-cyclodextrin
Carbohydrate Polymers, 2017, 156, 215-222; DOI:10.1016/j.carbpol.2016.09.038

Thiry, J.; Krier, F.; Ratwatte, S.; Thomassin, J.-M.; Jerome, C.; Evrard, B.
Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes
HP-β-CD, RAMEB, Sulfobutylether-β-cyclodextrin (Captisol®), Crysmeb®, Itraconazole, Solubility enhancement, Solid dispersion

Enhanced solubility and antibacterial activity of lipophilic fluoro-substituted N-benzoyl-2-aminobenzothiazoles by complexation with β-cyclodextrins
β-CD, HP-β-CD, Microbial resistance, Nuclear magnetic resonance, Molecular modelling
International Journal of Pharmaceutics, 2016, 497, 18-22; DOI:10.1016/j.ijpharm.2015.11.024

Vestland, T. L.; Jacobsen, Ø.; Sande, S. A.; Myrset, A. H.; Klaveness, J.
Characterization of omega-3 tablets
β-Cyclodextrin as encapsulating agent
Food Chemistry, 2016, 197, Part A, 496-502; DOI:10.1016/j.foodchem.2015.10.142

Wang, L.; Yan, J.; Li, Y.; Xu, K.; Li, S.; Tang, P.; Li, H.
The influence of hydroxypropyl-β-cyclodextrin on the solubility, dissolution, cytotoxicity, and binding of riluzole with human serum albumin
Toxicity, Fluorescence quenching, Inclusion complex
Journal of Pharmaceutical and Biomedical Analysis, 2016, 117, 453-463; DOI:10.1016/j.jpba.2015.09.033

Wang, L.-L.; Zheng, W.-S.; Chen, S.-H.; Han, Y.-X.; Jiang, J.-D.
Development of rectal delivered thermo-reversible gelling film encapsulating a 5-fluouracil hydroxypropyl-β-cyclodextrin complex
Transport efficiency, Cellular uptake, Colorectal cancer
Carbohydrate Polymers, 2016, 137, 9-18; DOI:10.1016/j.carbpol.2015.10.042

Wang, W.-X.; Feng, S.-S.; Zheng, C.-H.
A comparison between conventional liposome and drug-cyclodextrin complex in liposome system
Initial burst release, Risperidone

Enhancing effect of γ-cyclodextrin on wound dressing properties of sacran hydrogel film
Cross-linked hydrogel film, Swelling ratio, Porosity, α-CD, β-CD, γ-CD

Fabrication of non-spherical Pickering emulsion droplets by cyclodextrins mediated molecular self-assembly

Average roundness, Castor oil, Drug delivery system

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 163-172; DOI:10.1016/j.colsurfa.2015.11.036

Pentacyclic triterpenes grafted on CD cores to interfere with influenza virus entry: A dramatic multivalent effect

Copper-catalyzed azide-alkyl cycloaddition reaction, Microwave activation, Oseltamivir, Oleanolic acid, Hemagglutinin

Biomaterials, 2016, 78, 74-85; DOI:10.1016/j.biomaterials.2015.11.034

Yang, D. H.; Kim, H. J.; Kim, J. K.; Chun, H. J.; Park, K.

Preparation of redox-sensitive β-CD-based nanoparticles with controlled release of curcumin for improved therapeutic effect on liver cancer in vitro

1-Dodecanethiol, Per-6-thiol-β-CD, Rhodamine B, Anticancer effect on mouse hepatoma Hepa 1-6 cells, Disulfide bond formation

Dual pH and temperature responsive hydrogels based on β-cyclodextrin derivatives for atorvastatin delivery

2-Methylacrylic acid modified β-cyclodextrin, 2-Methylacrylic acid, N,N’-methylene diacrylamide, Swelling rate, Drug release

Carbohydrate Polymers, 2016, 136, 300-306; DOI:10.1016/j.carbpol.2015.08.096

Yang, L.-J.; Xia, S.; Ma, S.-X.; Zhou, S.-Y.; Zhao, X.-Q.; Wang, S.-H.; Li, M.-Y.; Yang, X.-D.

Host–guest system of hesperetin and β-cyclodextrin or its derivatives: Preparation, characterization, inclusion mode, solubilization and stability

Herbal medicines, Binding behaviors

Materials Science and Engineering: C, 2016, 59, 1016-1024; DOI:10.1016/j.msec.2015.10.037

Yang, Y.; Gao, J.; Ma, X.; Huang, G.

Inclusion complex of tamibarotene with hydroxypropyl-β-cyclodextrin: Preparation, characterization, in-vitro and in-vivo evaluation

Freeze-drying method, In vivo studies, Solubility, Bioavailability

Yu, N.; Li, G.; Gao, Y.; Liu, X.; Ma, S.

Stimuli-sensitive hollow spheres from chitosan-graft-β-cyclodextrin for controlled drug release

Sodium tripolyphosphate, Doxorubicin, Cytotoxicity tests, Polymeric hollow spheres

Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes of oxaliplatin

Job plot, Cytotoxicity

Zhang, L.; Man, S.; Qiu, H.; Liu, Z.; Zhang, M.; Ma, L.; Gao, W.

Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin

Saturated aqueous solution method, Cell cycle arrest, Apoptosis

Environmental Toxicology and Pharmacology, 2016, 48, 31-38; DOI:10.1016/j.etap.2016.09.021

Nagy, N.; Fenyvesi, É.; Kiss, É.

Comparision of polymeric nanosystems containing of highly dispersed curcumin

HPBCD, Soluble β-CD polymer crosslinked with epichlorohydrin, Curcumin-loaded Pluronic 105 + 123 mixed micelles with β-CD

4. CDs in Cell Biology

Alawin, O. A.; Ahmed, R. A.; Ibrahim, B. A.; Briski, K. P.; Sylvester, P. W.

Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells

Hydroxypropyl-β-cyclodextrin, Accumulation in the lipid raft microdomain, Cytotoxicity, Caveolin-1

The Journal of Nutritional Biochemistry, 2016, 27, 266-277; DOI:10.1016/j.jnutbio.2015.09.018

Neuronal gene repression in Niemann–Pick type C models is mediated by the c-Abl/HDAC2 signaling pathway
Treatment with methyl-β-cyclodextrin and vitamin E, Histone deacetylase 2, Tyrosine kinase c-Abl, Imatinib

Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 269-279; DOI:10.1016/j.bbagrm.2015.11.006

Fan, G.; Fan, M.; Wang, Q.; Jiang, J.; Wan, Y.; Gong, T.; Zhang, Z.; Sun, X.

Bio-inspired polymer envelopes around adenoviral vectors to reduce immunogenicity and improve in vivo kinetics

Cleavable PEGylated β-cyclodextrin-polyethyleneimine conjugate, In innate and adaptive immunogenicity of adenovirus particles, Cancer gene therapy

Acta Biomaterialia, 2016, 30, 94-105; DOI:10.1016/j.actbio.2015.11.005

Effect of O-methyl-β-cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of L-glutamate in brain nerve terminals

Extraction of cholesterol from the plasma membrane, Triethoxy(3-isocyanatopropyl)silane, Magnetic manipulation, Maghemite nanoparticles

Colloids and Surfaces B: Biointerfaces, 2017, 149, 64-71; DOI:10.1016/j.colsurfb.2016.10.007

Longobardi, V.; Albero, G.; Canditiis, C. D.; Salzano, A.; Natale, A.; Balestrieri, A.; Neglia, G.; Campanile, G.; Gasparrini, B.

Cholesterol-loaded cyclodextrins prevent cryocapacitation damages in buffalo (Bubalus bubalis) cryopreserved sperm

Viability/capacitation status, Fertilizing ability

Niyonzima, N.; Halvorsen, B.; Sporsheim, B.; Garred, P.; Aukrust, P.; Mollnes, T. E.; Espevik, T.

Complement activation by cholesterol crystals triggers a subsequent cytokine response

2-Hydroxypropyl-β-cyclodextrin, Atherosclerosis, Inflammasome, Interleukin-1β

Molecular Immunology, 2016, In Press; DOI:10.1016/j.molimm.2016.09.019

Pratelli, A.; Colao, V.

Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro

Cholesterol depletion by methyl-β-cyclodextrin, Plasma membrane, Infectivity

Virus Research, 2016, 211, 186-193; DOI:10.1016/j.virusres.2015.10.013

Enriching membrane cholesterol improves stability and cryosurvival of buffalo spermatozoa

Cholesterol-loaded-cyclodextrins, Phospholipids, Induced acrosome reaction, Membrane fluidity, Membrane integrity

Animal Reproduction Science, 2016, 164, 72-81; DOI:10.1016/j.anireprosci.2015.11.014
Reis, A. H.; Moreno, M. M.; Maia, L. A.; Oliveira, F. P.; Santos, A. S.; Abreu, J. G.

Cholesterol-rich membrane microdomains modulate Wnt/β-catenin morphogen gradient during *Xenopus* development

Disruption by methyl-beta-cyclodextrin, Head development, Embryo

Combination of n-3 polyunsaturated fatty acids reduces atherogenesis in apolipoprotein E-deficient mice by inhibiting macrophage activation

Lipid raft disruption by methyl-β-cyclodextrin, Inflammation, Toll-like receptor 4

Biased signalling is an essential feature of TLR4 in glioma cells

Treatment with methyl-β-cyclodextrin, Lipopolysaccharides, Inflammatory balance, Biased agonism

5. CDs in Food, Cosmetics and Agrochemicals

Abarca, R. L.; Rodríguez, F. J.; Guarda, A.; Galotto, M. J.; Bruna, J. E.

Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component

Active packaging, Co-precipitation method, 2-Nonanone, Antimicrobial

Food Chemistry, 2016, 196, 968-975; DOI:10.1016/j.foodchem.2015.10.023

Abdelmalek, L.; Fatiha, M.; Leila, N.; Mouna, C.; Nora, M.; Djameleddine, K.

Computational study of inclusion complex formation between carvacrol and β-cyclodextrin in vacuum and in water: Charge transfer, electronic transitions and NBO analysis

Hydrophobic interaction, Hydrogen bonding, PM3, ONIOM2, DFT, TD-DFT

Balto, A. S.; Lapis, T. J.; Silver, R. K.; Ferreira, A. J.; Beaudry, C. M.; Lim, J.; Penner, M. H.

On the use of differential solubility in aqueous ethanol solutions to narrow the DP range of food-grade starch hydrolysis products

Corn syrup solids, Maltooligosaccharides, Maltopolysaccharides, Ethanol-fractionation, Dispersity

Food Chemistry, 2016, 197, Part A, 872-880; DOI:10.1016/j.foodchem.2015.10.120

Interactions of free and encapsulated hydroxycinnamic acids from green coffee with egg ovalbumin, whey and soy protein hydrolysates

Proteolytic digestion, Availability from processed food, β-Cyclodextrin

LWT - Food Science and Technology, 2016, 65, 823-831; DOI:10.1016/j.lwt.2015.09.001

Ceborska, M.

Structural investigation of the β-cyclodextrin complexes with linalool and isopinocampheol – Influence of monoterpenes cyclicity on the host–guest stoichiometry

Chiral terpene alcohols, 2:2 stoichiometry

Chemical Physics Letters, 2016, 651, 192-197; DOI:10.1016/j.cplett.2016.03.051

Chen, G.; Liu, B.

Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin

Edible film, Coating for packaging

Food Hydrocolloids, 2016, 55, 100-107; DOI:10.1016/j.foodhyd.2015.11.009

Cheong, A. M.; Tan, K. W.; Tan, C. P.; Nyam, K. L.

Kenaf (Hibiscus cannabinus L.) seed oil-in-water Pickering nanoemulsions stabilised by mixture of sodium caseinate, Tween 20 and β-cyclodextrin

Emulsifier mixtures, Synergistic effect

Food Hydrocolloids, 2016, 52, 934-941; DOI:10.1016/j.foodhyd.2015.09.005

Gong, L.; Li, T.; Chen, F.; Duan, X.; Yuan, Y.; Zhang, D.; Jiang, Y.

An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization

Postharvest fresh litchi fruits, In vivo assays, Damage to hyphal and/or sporangiophore cell walls and membrane structures

Food Chemistry, 2016, 196, 324-330; DOI:10.1016/j.foodchem.2015.09.052

Ho, B. T.; Hofman, P. J.; Joyce, D. C.; Bhandari, B. R.

Uses of an innovative ethylene-α-cyclodextrin inclusion complex powder for ripening of mango fruit

Fruit colour and firmness, In-transit ripening

Postharvest Biology and Technology, 2016, 113, 77-86; DOI:10.1016/j.postharvbio.2015.11.005

Efficient antimicrobial activity and reduced toxicity of 1-dodecyl-3-methylimidazolium tetrafluoroborate ionic liquid/β-cyclodextrin complex

Imidazolium ionic liquid, Acute toxicity studies

Chemical Engineering Journal, 2016, 284, 1136-1145; DOI:10.1016/j.cej.2015.09.041
Kfoury, M.; Sahraoui, A. L.-H.; Bourdon, N.; Laruelle, F.; Fontaine, J.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S.

Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins

Freeze-dried inclusion complexes, Phytopathogenic fungi, Encapsulation efficiency

Food Chemistry, 2016, 196, 518-525; DOI:10.1016/j.foodchem.2015.09.078

Laokuldilok, N.; Thakeow, P.; Kopermsub, P.; Utama-ang, N.

Optimisation of microencapsulation of turmeric extract for masking flavour

Binary blend of wall materials, Brown rice flour, β-CD, HPLC, Headspace GC–MS

Food Chemistry, 2016, 194, 695-704; DOI:10.1016/j.foodchem.2015.07.150

Li, J. F.; Zhang, J. X.; Wang, Z. G.; Yao, Y. J.; Han, X.; Zhao, Y. L.; Liu, J. P.; Zhang, S. Q.

Identification of a cyclodextrin inclusion complex of antimicrobial peptide CM4 and its antimicrobial activity

Novel food preservative, Susceptibility to proteinases, β-Cyclodextrin, Antibacterial assay, Stability

Food Chemistry, 2016, In Press; DOI:10.1016/j.foodchem.2016.10.040

Liu, M.; Zheng, Y.; Wang, C.; Xie, J.; Wang, B.; Wang, Z.; Han, J.; Sun, D.; Niu, M.

Improved stability of (+)-catechin and (−)-epicatechin by complexing with hydroxypropyl-β-cyclodextrin: Effect of pH, temperature and configuration

HP-β-CD, Protection effect, Isothermal titration calorimetry, Fluorescence spectroscopy, Stability

Mendes, A. C.; Stephansen, K.; Chronakis, I. S.

Electrospinning of food proteins and polysaccharides

Biopolymers, Nanofibers, Microfibers

Food Hydrocolloids, 2016, In Press; DOI:10.1016/j.foodhyd.2016.10.022

Navarro, R.; Arancibia, C.; Herrera, M. L.; Matiacevich, S.

Effect of type of encapsulating agent on physical properties of edible films based on alginate and thyme oil

Organoleptic characteristics, Trehalose, β-Cyclodextrin, Tween 20, Emulsions

Food and Bioproducts Processing, 2016, 97, 63-75; DOI:10.1016/j.fbp.2015.11.001

Fluorescence spectroscopic investigation of the interaction of citrinin with native and chemically modified cyclodextrins

Nephrotoxic mycotoxin, Contaminant of different foods and drinks, Methylated β-cyclodextrins, Fluorescence enhancement, Toxin binder

Rutenberg, R.; Bernstein, S.; Paster, N.; Fallik, E.; Poverenov, E.

Antimicrobial films based on cellulose-derived hydrocolloids. A synergetic effect of host–guest interactions on quality and functionality

Fresh harvested wheat grains, Bio-active hydrocolloids, Controlled release, β-Cyclodextrin, Propionic acid

Colloids and Surfaces B: Biointerfaces, 2016, 137, 138-145; DOI:10.1016/j.colsurfb.2015.06.022

Sukhtezari, S.; Almasi, H.; Pirsa, S.; Zandi, M.; Pirouzifard, M.

Development of bacterial cellulose based slow-release active films by incorporation of Scrophularia striata Boiss. extract

Intrinsic compactness, Food active packaging, β-Cyclodextrin, Physical properties, Antioxidant activity, Controlled release

Carbohydrate Polymers, 2017, 156, 340-350; DOI:10.1016/j.carbpol.2016.09.058

Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging

Co-precipitation method, Minimum inhibitory concentration, Minimum bactericidal concentration

Food Chemistry, 2016, 196, 996-1004; DOI:10.1016/j.foodchem.2015.10.043

Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging

Prolong the shelf-life of strawberry, Polyvinyl alcohol, Antimicrobial activity

Food Control, 2016, 59, 366-376; DOI:10.1016/j.foodcont.2015.06.005

Zhang, S.; Zhang, H.; Xu, Z.; Wu, M.; Xia, W.; Zhang, W.

Chimonanthus praecox extract/cyclodextrin inclusion complexes: Selective inclusion, enhancement of antioxidant activity and thermal stability

Flavonoids, Food additive, Natural antioxidants

Industrial Crops and Products, 2017, 95, 60-65; DOI:10.1016/j.indcrop.2016.09.033

Zolfaghari, G.

β-Cyclodextrin incorporated nanoporous carbon: Host–guest inclusion for removal of p-nitrophenol and pesticides from aqueous solutions

1,4-Phenylene diisocyanate linker, DDT, DDD, DDE, Adsorption

Chemical Engineering Journal, 2016, 283, 1424-1434; DOI:10.1016/j.cej.2015.08.110
6. CDs for other Industrial Applications

Abdolmaleki, A.; Mallakpour, S.; Mahmoudian, M.; Sabzalian, M. R.
A new polyamide adjusted triazinyl-β-cyclodextrin side group embedded magnetic nanoparticles for bacterial capture
One-pot co-precipitation, Triphenyl phosphite, Monochlorotriazinyl-β-cyclodextrin, Nano-adsorbent, Poly(isophthalamid), Direct polycondensation

Cao, H.; Jiang, Y.; Zhang, H.; Nie, K.; Lei, M.; Deng, L.; Wang, F.; Tan, T.
Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation
Enzymatic biodiesel production, Surface modification
Enzyme and Microbial Technology, 2016, In Press; DOI:10.1016/j.enzmictec.2016.10.007

Celebioglu, A.; Sen, H. S.; Durgun, E.; Uyar, T.
Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers
HP-βCD, HP-γCD, Aniline, Benzene, Electrospinning, Air filtration
Chemosphere, 2016, 144, 736-744; DOI:10.1016/j.chemosphere.2015.09.029

A new extraction method to assess the environmental availability of ciprofloxacin in agricultural soils amended with exogenous organic matter
Borax, Na₂EDTA, 2-Hydroxypropyl-β-cyclodextrin, Soil/compost mixtures, Available fraction level
Chemosphere, 2016, 165, 460-469; DOI:10.1016/j.chemosphere.2016.09.040

Fabrication of β-cyclodextrin/poly(l-glutamic acid) supported magnetic graphene oxide and its adsorption behavior for 17β-estradiol
Film diffusion, Intraparticle diffusion, Regeneration experiments

Kubli, M. R.; Yatsimirsky, A. K.
Phosphodiester cleavage by trivalent lanthanides in the presence of native cyclodextrins
Binuclear polyhydroxocomplexes, Metal–β-CD and phosphodiester–β-CD interactions, Kinetics, Hydrolysis, Catalysis
Kuklin, S.; Maximov, A.; Zolotukhina, A.; Karakhanov, E.

New approach for highly selective hydrogenation of phenol to cyclohexanone: Combination of rhodium nanoparticles and cyclodextrins

Catalysis Communications, 2016, 73, 63-68; DOI:10.1016/j.catcom.2015.10.005

Lannoy, A.; Kania, N.; Bleta, R.; Fourmentin, S.; Machut-Binkowski, C.; Monflier, E.; Ponchel, A.

Photocatalysis of volatile organic compounds in water: Towards a deeper understanding of the role of cyclodextrins in the photodegradation of toluene over titanium dioxide

α-CD, β-CD, γ-CD, RAME-β-CD, Delay in the photodegradation process, Adsorption, Inclusion complex

Li, X.; Shi, J.; Wu, K.; Luo, F.; Zhang, S.; Guan, X.; Lu, M.

A novel pH-sensitive aqueous supramolecular structured photoinitiator comprising of 6-modified per-methylated β-cyclodextrin and 1-hydroxycyclohexyl phenyl ketone

6'-Acryloyl ethylenediamine-6'-deoxy-2',3'-di-O-methyl-hexakis (2''-vii, 3''-vii, 6''-vii-tri-O-methyl)-β-cyclodextrin, Water-souble

Liu, J.; Xiao, Y.; Liao, K.-S.; Chung, T.-S.

Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin

Gas separation performance, CO₂ permeability, Physical aging

Journal of Membrane Science, 2017, 523, 92-102; DOI:10.1016/j.memsci.2016.10.001

Liu, Y.; Zou, C.; Li, C.; Lin, L.; Chen, W.

Evaluation of β-cyclodextrin–polyethylene glycol as green scale inhibitors for produced-water in shale gas well

Agggregation of calcium carbonate crystals, Environmentally friendly, Water treatment

Desalination, 2016, 377, 28-33; DOI:10.1016/j.desal.2015.09.007

Okamoto, Y.; Ward, T.

Supramolecular enzyme mimics

Review, Artificial metalloenzyme, Cyclodextrin-based artificial enzymes, Supramolecular cages, Proteins, DNA, Molecular recognition, Dative and supramolecular anchoring

Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 2016; DOI:10.1016/B978-0-12-409547-2.12551-X

Peng, K.; Chen, C.; Pan, W.; Liu, W.; Wang, Z.; Zhu, L.

Preparation and properties of β-cyclodextrin/4,4'-diphenylmethane diisocyanate/polyethylene glycol (β-CD/MDI/PEG) crosslinking copolymers as polymeric solid–solid phase change materials
Crosslinking density, Thermal energy storage

Takeshita, T.; Umeda, T.; Hara, M.

Fabrication of a dye-sensitized solar cell containing a noncarboxylated spiropyran-derived photomerocyanine with cyclodextrin

Carboxymethyl-β-cyclodextrin sodium salt (CM-β-CD), Photovoltaic conversion, Photoresponsivity, Inclusion complex

Tang, K.; Wang, Y.; Zhang, P.; Huang, Y.; Hua, J.

Optimization study on continuous separation of equol enantiomers using enantioselective liquid–liquid extraction in centrifugal contactor separators

Multistage enantioselective liquid–liquid extraction, HP-β-CD, Countercurrent cascade of centrifugal contactor separators, Simulation, Chiral separation

Process Biochemistry, 2016, 51, 113-123; DOI:10.1016/j.procbio.2015.11.021

Vasconcelos, D. A.; Kubota, T.; Santos, D. C.; Araujo, M. V.; Teixeira, Z.; Gimenez, I. F.

Preparation of Auₙ quantum clusters with catalytic activity in β-cyclodextrin polyurethane nanosponges

1,6-Hexamethylene diisocyanate, Core-etching of glutathione-capped Au nanoparticles, Reduction of 4-nitrophenol

Carbohydrate Polymers, 2016, 136, 54-62; DOI:10.1016/j.carbpol.2015.09.010

Wang, L.; Chen, B.; Meng, Z.; Luo, B.; Wang, X.; Zhao, Y.

High performance carbon-coated lithium zinc titanate as an anode material for lithium-ion batteries

β-CD as the carbon source

Electrochimica Acta, 2016, 188, 135-144; DOI:10.1016/j.electacta.2015.11.124

Xing, W.; Li, C.; Chen, G.; Han, Z.; Zhou, Y.; Hu, Y.; Meng, Q.

Incorporating a novel metal-free interlayer into g-C₃N₄ framework for efficiency enhanced photocatalytic H₂ evolution activity

Thermal polymerization of the β-cyclodextrin and melamine, Charge transfer

Applied Catalysis B: Environmental, 2017, 203, 65-71; DOI:10.1016/j.apcatb.2016.09.075

Yu, L.; Vazquez-Cuevas, G.; Duan, L.; Semple, K. T.

Buffered cyclodextrin extraction of ¹⁴C-phenanthrene from black carbon amended soil

Soil organic matter, Hydroxylpropyl-β-cyclodextrin extraction, Mineralization, pH

Environmental Technology & Innovation, 2016, 6, 177-184; DOI:10.1016/j.eti.2016.09.002

Zhao, F.; Repo, E.; Meng, Y.; Wang, X.; Yin, D.; Sillanpää, M.

An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its...
application in preconcentration of rare earth elements in seawater

La(III), Ce(III), and Eu(III), Multi-component adsorption

7. CDs in Sensing and Analysis

Enantioselective analysis of fluoxetine in pharmaceutical formulations by capillary zone electrophoresis
Cyclodextrin modified capillary electrophoresis, TRIMEB, Selective serotonin reuptake inhibitor, Chiral separation

Fanali, S.
Nano-liquid chromatography applied to enantiomers separation
Chiral selectors, Cyclodextrins, Glycopeptide antibiotics, Polysaccharides

Gao, J.; Zhang, S.; Liu, M.; Tai, Y.; Song, X.; Qian, Y.; Song, H.
Synergistic combination of cyclodextrin edge-functionalized graphene and multiwall carbon nanotubes as conductive bridges toward enhanced sensing response of supramolecular recognition
Dopamine, Uric acid, Tryptophan, Oxidation peak currents, β-Cyclodextrin, Conductive network

Gao, Y.-q.; Li, T.; Wang, X.-t.; Qi, Y.-c.; Wen, Q.; Shen, J.-w.; Qiu, L.-y.; Wan-zhi, M.
Optical sensing composites for cysteine detection: Combining rhodamine-based chemosensors with up-conversion nanocrystals
Nanocrystals, α-Cyclodextrin, Emission decay lifetime

Garrido, J.; Rahemi, V.; Borges, F.; Brett, C.; Garrido, E.
Carbon nanotube β-cyclodextrin modified electrode as enhanced sensing platform for the determination of fungicide pyrimethanil
Pome fruit, Electrocatalytic oxidation, Voltammetric sensor
Food Control, 2016, 60, 7-11; DOI:10.1016/j.foodcont.2015.07.001

Izumi, K.; Utiyama, M.; Maruo, Y. Y.
A porous glass-based ozone sensing chip impregnated with potassium iodide and α-cyclodextrin
Supressing volatilization of iodine

An optical sensing composite for cysteine detection using up-conversion nanoparticles and a rhodamine-derived chemosensor: Construction, characterization, photophysical feature and sensing performance

α-Cyclodextrin, Excitation host

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 155, 81-87; DOI:10.1016/j.saa.2015.11.009

Kan, X.; Zhang, T.; Zhong, M.; Lu, X.

CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection

Mercapto-β-cyclodextrin, Gold nanoparticles, Multi-walled carbon nanotubes, Hydroquinone, Electrochemical marker, Sensitivity

Biosensors and Bioelectronics, 2016, 77, 638-643; DOI:10.1016/j.bios.2015.10.033

Khodaveisi, J.; Dadfarnia, S.; Shabani, A. M. H.; Saberi, D.

Colorimetric determination of nabumetone based on localized surface plasmon resonance of functionalized gold nanoparticles as a chemical sensor

Aggregation of the thiolated β-cyclodextrin functionalized gold nanoparticles

Li, J.; Wang, X.; Duan, H.; Wang, Y.; Bu, Y.; Luo, C.

Based on magnetic graphene oxide highly sensitive and selective imprinted sensor for determination of sunset yellow

Ionic liquid, Gold nanoparticles, Imprinted electrochemical sensor

Talanta, 2016, 147, 169-176; DOI:10.1016/j.talanta.2015.09.056

Luo, C.; Dong, Q.; Qian, M.; Zhang, H.

Thermosensitive polymer-modified gold nanoparticles with sensitive fluorescent properties

Low critical solution temperature, Solvent, β-CD

Chemical Physics Letters, 2016, 664, 89-95; DOI:10.1016/j.cplett.2016.10.019

Maniyazagan, M.; Rameshwaran, C.; Mariadasse, R.; Jeyakanthan, J.; Premkumar, K.; Stalin, T.

Fluorescence sensor for Hg²⁺ and Fe³⁺ ions using 3,3’-dihydroxybenzidine: α-cyclodextrin supramolecular complex: Characterization, in-silico and cell imaging study

3,3’-Dihydroxybenzidine:α-cyclodextrin, Co-precipitation, Kneading method, Fluorescence enhancement, Bio-imaging

Miękus, N.; Olędzka, I.; Plenis, A.; Kowalski, P.; Bień, E.; Miękus, A.; Krawczyk, M. A.; Adamkiewicz-Drożyńska, E.; Bączek, T.

Determination of urinary biogenic amines’ biomarker profile in neuroblastoma and pheochromocytoma patients by MEKC method with preceding dispersive liquid–liquid microextraction
Moreira, F. T.; Sales, M. G. F.

Smart naturally plastic antibody based on poly(α-cyclodextrin) polymer for β-amyloid-42 soluble oligomer detection

Protein imprinting, Peptide biomarker, Alzheimer disease, α-CD, Natural building blocks, Screen-printed electrodes, Biosensor

Sensors and Actuators B: Chemical, 2017, 240, 229-238; DOI:10.1016/j.snb.2016.08.150

Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine

Electrochemical sensor, Screen-printed carbon electrode, Differential pulse voltammetry

Carbohydrate Polymers, 2016, 135, 267-273; DOI:10.1016/j.carbpol.2015.09.008

Palanisamy, S.; Thirumalraj, B.; Chen, S.-M.

A novel amperometric nitrite sensor based on screen printed carbon electrode modified with graphite/β-cyclodextrin composite

Catalytic activity, Oxidation overpotential, Sensitivity, Electrochemical sensor, Amperometry

Journal of Electroanalytical Chemistry, 2016, 760, 97-104; DOI:10.1016/j.jelechem.2015.11.017

Qin, Q.; Bai, X.; Hua, Z.

Electropolymerization of a conductive β-cyclodextrin polymer on reduced graphene oxide modified screen-printed electrode for simultaneous determination of ascorbic acid, dopamine and uric acid

Cyclic voltammetry, Differential pulse voltammetry, Sensor

Journal of Electroanalytical Chemistry, 2016, 782, 50-58; DOI:10.1016/j.jelechem.2016.10.004

Steric hindrance regulated supramolecular assembly between β-cyclodextrin polymer and pyrene for alkaline phosphatase fluorescent sensing

Pyrene attached on mononucleotides

Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling

β-CD, Antipsychotic, Experimental design

Journal of Pharmaceutical and Biomedical Analysis, 2016, 117, 398-404; DOI:10.1016/j.jpba.2015.09.022

Per(3-chloro-4-methyl)phenylcarbamate cyclodextrin clicked stationary phase for chiral separation in multiple modes high-performance liquid chromatography

Aromatic alcohols, Flavonoids, β-Blockers, Amino acids, Enantioselectivity, Chiral stationary phase

Analytica Chimica Acta, 2016, In Press; DOI:10.1016/j.aca.2016.10.015

Teka, S.; Gaied, A.; Jaballah, N.; Xiaonan, S.; Majdoub, M.

Thin sensing layer based on semi-conducting β-cyclodextrin rotaxane for toxic metals detection

Hg^{2+}, Cu^{2+} and Pb^{2+} cations, Impedance spectroscopy, Electrochemical properties

Toot, J.; Donegan, M.; Orens, P.; Gibbs, A.; Neely, A.; Bennett, M.; Boggs, J.; Atterson, P.

Bioanalytical analysis of plasma cocaine exposure in a preliminary self-administration study utilizing different concentrations of cyclodextrin

Journal of Pharmacological and Toxicological Methods, 2016, 81, 335; DOI:10.1016/j.vascn.2016.02.003

Development of a high speed counter-current chromatography system with Cu(II)-chiral ionic liquid complexes and hydroxypropyl-β-cyclodextrin as dual chiral selectors for enantioseparation of naringenin

[1-Butyl-3-methylimidazolium][L-Pro]

Xu, Q.; Tan, S.; Petrova, K.

Development and validation of a hydrophilic interaction chromatography method coupled with a charged aerosol detector for quantitative analysis of nonchromophoric α-hydroxyamines, organic impurities of metoprolol

Comprehensive column screening, HILIC stationary phases, Metoprolol succinate

Yang, L.; Zhao, H.; Li, Y.; Zhang, Y.; Ye, H.; Zhao, G.; Ran, X.; Liu, F.; Li, C.-P.

Insights into the recognition of dimethomorph by disulfide bridged β-cyclodextrin and its high selective fluorescence sensing based on indicator displacement assay

Biosensors and Bioelectronics, 2017, 87, 737-744; DOI:10.1016/j.bios.2016.09.044

Using β-cyclodextrin/attapulgite-immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages

Enrichment factors, High-performance liquid chromatography, Plackett–Burman design

Food Chemistry, 2016, 197, Part B, 1064-1072; DOI:10.1016/j.foodchem.2015.11.107
Yi, Y.; Zhu, G.; Wu, X.; Wang, K.

Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode

Core-shell heterostructure

Biosensors and Bioelectronics, 2016, 77, 353-358; DOI:10.1016/j.bios.2015.09.052