Self-healing materials based on host-guest interaction

Self-healing materials are able to repair the cracks or other damage occurring upon usage without human intervention. Such microcracks especially those deep within the structure can fatally deteriorate the function reducing the lifetime. The development of materials able to repair themselves is a relatively new field of intelligent materials.

One main type of self-healing polymers are intrinsic self-healing ones able to heal cracks by themselves upon heating or thermo-mechanical effect. For instance, the friction generates heat to induce local melting and ability to repair the damage via chain interdiffusion and entanglements. Another possibility is thermally reversible crosslinking without additional catalysts or monomers. In the other main type of such materials the healing agents (catalysts, monomers) are *a priori* encapsulated or embedded in fragile microcapsules or capillaries [1]. In this review we try to summarize the self-healing materials based on cyclodextrins.

Controlled release of corrosion inhibitor

The corrosion inhibitor can be encapsulated by CDs and incorporated in the coating this way ensuring the slow release of the inhibitor and self-healing of the corrosion defects. For instance, mercaptobenzothiazole and mercaptobenzimidazole (MBT and MBI) complexed by BCD in the coating provided long-term protection for high strength aluminum alloys against atmospheric corrosion [2]. No corrosion products can be seen on the scratched sample doped with inhibitor/CD complex while the sample with the non-complexed inhibitor was covered by white corrosion products above the scratch. The encapsulation of the corrosion inhibitor with CDs results in bulkier complex with lower diffusion within the coating, slower leaching and longer lasting effect [3,4].

Intelligent anticorrosion coating was developed by embedding aniline/ACD complex and bisammonium/cucurbit[6]uril (C6B) complex into hollow mesoporous silica nanoparticles as acid- and alkaline responsive elements of the pH responsive intelligent coating [5]. The release of the corrosion inhibitor (benzotriazol) was controlled by the encapsulated pH-responsive compounds. The corrosion inhibitor was released only upon the change of pH in the corroded area.

Poly(o-phenylenediamine) (PoPD) nanotubes were fabricated through chemical oxidative polymerization of o-phenylenediamine in cetyl trimethyl ammonium bromide (CTAB)
microemulsion polymerization using BCD and iron (III) chloride (FeCl_3). Improved resistance against corrosion of mild steel by epoxy coating containing synthesized PoPD nanotubes was observed [6].

Self-healing materials based on host-guest interaction

The molecular recognition of polymers by CDs is utilized. The polyrotaxanes comprising CDs threaded on the main chain of a polymer have no such stimuli responsive properties. Among the supramolecular polymers the side chain complexes are suitable for the preparation of self-healing materials [7,8]. The polymers modified with CD (host polymers) form gels with polymers modified with guests (guest polymers) in water via self-assembly (Figure 1). The host polymer can be a cross-linked CD polymer, too [9]. These gels show self-healing properties. The stimuli responsiveness depends on the properties of the guest moieties.

Redox-responsive self-healing materials

Redox stimuli of poly(acrylic acid) (PAA) possessing BCD as host polymer and PAA having ferrocene moieties as guest polymer induce sol-gel transition and readhesion of the cut surfaces [10]. Treating the gel with an oxidizing agent ferrocenium cation is formed, which does not form complex with BCD and the gel is converted to sol. The gel is restored by treating the sol with a reducing agent.

![Figure 1](image)

Figure 1 Self-assembly of host polymers and guest polymers on the effect of external stimuli

The polymers can be prepared also by self-assembly of host dimers and guest dimers. Ferrocene- and cyclodextrin-terminated monomers form water-soluble AA-BB-type supramolecular polymers on the basis of inclusion complex formation of ferrocene with BCD resulting in one-dimensional supramolecular nanofibers (Figure 2). Changing the redox potential the nanofibers fall apart or assemble reversibly providing unique self-degrading and -healing properties [11].
Figure 2 Supramolecular polymers formed by interaction of dimer hosts and dimer guests with redox stimuli responsiveness

A mixture of the above two systems is shown in Figure 3. A multifunctional ferrocene-modified poly(glycidyl methacrylate) (PGMA-Fc) and a BCD dimer was prepared for the construction of electrically driven removable and self-healing polymeric materials based on the complexation reaction between ferrocene and BCD groups. The self-healing performance could be enhanced with wetting the sample to increase the electrical conductivity. The material is a promising self-healing agent for commercial painting products [12].

Figure 3 Self-assembly of host dimer and guest polymers

Light responsive self-healing materials

When azobenzene was used as a guest, the gel showed sol-gel transition by photoirradiation. While ACD forms complex selectively with trans-azobenzene, BCD forms complex selectively with the cis isomer. Upon irradiation with UV light trans-azobenzene is transformed into the cis
isomer, which is readily transformed back to the \textit{trans} isomer upon irradiation with visible light. The viscosity of a hydrogel consisting of poly(sodium acrylate) modified with dodecyl side chain was decreased upon addition of ACD, while increased again when diazobenzoic acid was added as a competitive guest. With this photoisomerization controlled association and dissociation of the dodecyl chain with ACD was achieved [13].

Reversible adhesion and dissociation of the host gel with CD moieties from the guest gel with azobenzene moieties may be controlled by photoirradiation. The differential affinities of ACD and BCD for the \textit{trans}-azobenzene and \textit{cis}-azobenzene are employed in the construction of a photoswitchable gel assembly system [14].

\textbf{Self-assembly controlled by pH, temperature or solvent}

Materials responsive to various external stimuli such as pH, temperature and solvent can be prepared using the host-guest interaction with CDs. Harada’s group has elaborated several examples.

BCD forms complex with dansyl groups at neutral pH but not at lower pH. This phenomenon was utilized for the development of pH responsive gel assembly between CD gels and the gels with dansyl moieties [15].

Poly(acryl amide) (PAAm) gel modified with benzyl moiety forms assemblies with BCD gel at room temperature, with ACD gel at 15 \(^\circ\)C and GCD gel at 5 \(^\circ\)C providing a tool for the development of temperature controlled systems [16].

The aggregation state of pyrene is different in water and in DMSO. The aggregates present in water fall apart at a certain DMSO concentration in the solution. The aggregate forms complex with GCD, while the monomeric form associates with BCD. Thus, the gel containing pyrene moiety can differentiate between gels modified with ACD, BCD and GCD, selectively, based on the solvent composition [17].

\textbf{Self-healing materials responsive to magnetic effects}

Multiwall carbon nanotubes (MWCNTs) were covalently modified with BCD via grafting with maleic anhydride and then esterified with BCD. Then Fe2+ and Fe3+ ions were precipitated on the surface of the BCD-functionalized MWCNTs. Composites were made by incorporating Fe\textsubscript{3}O\textsubscript{4}@BCD-MWCNTs reinforced nanoparticles into poly(caprolactone) matrix. Then nanofibers were fabricated from the composite by electrospinning. It was found that the Fe\textsubscript{3}O\textsubscript{4} particles were aligned along the nanofiber axis (Figure 4). The composite nanofibers showed an excellent shape memory effect triggered by an alternating magnetic field [18].
Figure 4 Schematic structure of $\text{Fe}_3\text{O}_4@\text{CD-MWCNT}$ composite nanoparticles (redrawn after ref. 18)

References

Éva Fenyvesi
CycloLab Cyclodextrin R&D Laboratory, Ltd.,
Budapest, HUNGARY
BIBLIOGRAPHY & KEYWORDS

1. CDs: Derivatives, Production, Enzymes, Toxicity

Benkovics, G.; Malanga, M.; Fenyvesi, É.; Sortino, S.

Fluorescent cyclodextrins with nitric oxide releasing ability

6-Monodeoxy-6-monoazido-6'-monotosyl-β-cyclodextrin, DNA, Photoinduced energy transfer

Eurocarb18 - Book of Abstracts, 2015, P-015

Self-assembling cationic clusters from cyclodextrin and trehalose-based macrocycles for efficient gene delivery

Reversible complexation and delivery of DNA, Cationic clusters built on β-cyclodextrin, Gemini-type, dual-cluster supramolecules

Eurocarb18 - Book of Abstracts, 2015, P-080

Hall, M. B.

Determination of dietary starch in animal feeds and pet food by an enzymatic-colorimetric method: Collaborative study

Assay, α-Amylase, Amyloglucosidase

Journal of AOAC International, 2015, 98, 397-409; DOI:10.5740/jaoacint.15-012

Huang, B.; Chen, M.; Zhou, S.; Wu, L.

Synthesis and properties of clickable A(B-b-C)20 miktoarm star-shaped block copolymers with a terminal alkyn group

Polystyrene, Poly(tert-Bu acrylate)-block-polystyrene, Poly(tert-Bu acrylate)-block-poly(ethylene oxide), β-cyclodextrin unit as a core, Atom transfer radical polymerization

Polymer Chemistry, 2015, 6, 3913-3917; DOI:10.1039/c5py00338e

Jayaraman, N.; Daskhan, G. C.; Maiti, K.

Glycosidic bond expanded un-natural cyclic oligosaccharides

Exocyclic methylene incorporated monosaccharide, Oligomerization, Cyclic oligomers, Expanded analogues of naturally-occurring cyclodextrins, Amphiphilic, Soluble both in water and organic solvents

Eurocarb18 - Book of Abstracts, 2015, KL-015

Lin, Y. K.; Show, P. L.; Yap, Y. J.; Tan, C. P.; Ng, E-P.; Ariff, A. B.; Mohd Annuar, M. S.; Ling, T. C.

Direct recovery of cyclodextringlycosyltransferase from Bacillus cereus using aqueous two-phase flotation
Polyethylene glycol, Downstream processing

Malanga, M.; Darcsi, A.; Béni, S.; Benkovics, G.; Szemán, J.; Sohajda, T.; Szente, L.

An inclusion-assisted regioselective synthesis of folate-appended cyclodextrins

In situ inclusion complex formation between the folate moiety and the cyclodextrin, Native cyclodextrins, Amino-cyclodextrins, Methyl-cyclodextrins, Amino-methyl-cyclodextrins

Eurocarb18 - Book of Abstracts, 2015, O-081

Mansri, A.; Memou, C. H.; Benabadji, K. I.

Synthesis and pNP interactions of a new copolymer poly(4-vinylpyridine-G-(6-o-monotosyl-6-desoxy-β-cyclodextrin))

Cyclodextrin tosylation, Side chain quaternization, Interactions of copolymer/para-nitrophenol, Adsorption

Mobbs, J. I.; Koay, A.; Di, P. A.; Bieri, M.; Petrie, E. J.; Gorman, M. A.; Doughty, L.; Parker, M. W.; Stapleton, D.; Griffin, M. D. W.; Gooley, P. R.

Determinants of oligosaccharide specificity of the carbohydrate binding modules of AMP-activated protein kinase

Glucosyl-β-cyclodextrin

The Biochemical journal, 2015, 468, 245-257; DOI:10.1042/BJ20150270

Otsuka, I.; Zhang, Y.; Isono, T.; Rochas, C.; Kakuchi, T.; Satoh, T.; Borsali, R.

Sub-10 nm scale nanostructures in self-organized linear di- and triblock copolymers and miktoarm star copolymers consisting of maltoheptaose and polystyrene

Self-organized cylindrical and lamellar structures, Flory-Huggins interaction parameter

Macromolecules (Washington, DC, United States), 2015, 48, 1509-1517; DOI:10.1021/ma502295y

Patachia, S.; Croitoru, C.

Increasing the adsorption capacity and selectivity of poly(vinyl alcohol) hydrogels by an alternative imprinting technique

β-Cyclodextrin as template, Sorption yield

Journal of Applied Polymer Science, 2015, 132, 42024/1-42024/9; DOI:10.1002/app.42024

A GH57 4-α-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production

Glycoside hydrolase family, Disproportionation and cyclization reactions

Rachmawati, R.; de Gier, H. D.; Woortman, A. J. J.; Loos, K.

Synthesis of telechelic and three-arm polytetrahydrofuran-block-amylose

Maltoheptaose-b-PTHF-b-maltoheptaose, Amylose-b-PTHF-b-amylose
Rinaldi, L.; Martina, K.; Baricco, F.; Rotolo, L.; Cravotto, G.

Solvent-free copper-catalyzed azide-alkyne cycloaddition under mechanochemical activation

1,4-Disubstituted 1,2,3-triazole derivatives, β-Cyclodextrins, Ball-mill

Molecules, 2015, 20, 2837-2849; DOI:10.3390/molecules2002837

Shende, P.; Kulkarni, Y. A.; Gaud, R. S.; Deshmukh, K.; Cavalli, R.; Trotta, F.; Caldera, F.

Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations

Crosslinking agents, Carbonyl diimidazole, Pyromellitic dianhydride, Hexamethylene diisocynate, Rats

Soboleva, S. E.; Dmitrenok, P. S.; Verkhovod, T. D.; Buneva, V. N.; Sedykh, S. E.; Nevinsky, G. A.

Very stable high molecular mass multiprotein complex with DNase and amylase activities in human milk

Protecting infants from viral and bacterial infection, Lactoferrin, α-Lactalbumin, Maltoheptaose

Journal of Molecular Recognition, 2015, 28, 20-34; DOI:10.1002/jmr.2409

Sollogoub, M.

The cyclic conundrum solved: Synthesis and applications of site-selectively modified cyclodextrins with up to 6 different functions

Regioselective debenzylation, Poly-hetero-functionalized cyclodextrins, Hexadifferentiation

Eurocarb18 - Book of Abstracts, 2015, KL-023

Sun, Y.; Lv, X.; Li, Z.; Wang, J.; Jia, B.; Liu, J.

Recombinant cyclodextrinase from Thermococcus kodakarensis KOD1: expression, purification, and enzymatic characterization

Recombinant form of the enzyme, Low catalytic temperature, β-Cyclodextrin, Glucose Archaea, 2015, 397924/1-9; DOI:10.1155/2015/397924

Molecular engineering of cycloisomaltooligosaccharide glucanotransferase from Bacillus circulans T-3040: structural determinants for the reaction product size and reactivity

CITase, Site-directed mutagenesis

Biochemical Journal, 2015, 467, 259-270; DOI:10.1042/BJ20140860
2. CD complexes: Preparation, Properties in solution and in solid phase, Specific guests

Ghosh, S. N.; Ghosh, C.; Nandi, S.; Bhattacharyya, K.

Unfolding and refolding of a protein by cholesterol and cyclodextrin: A single molecule study

Single molecule fluorescence resonance energy transfer (sm-FRET), Cholesterol induced unfolding, β-Cyclodextrin induced refolding

Physical Chemistry Chemical Physics, 2015, 17, 8017-8027; DOI:10.1039/C5CP00385G

Gonzalez-Gaitano, G.; da Silva, M. A.; Radulescu, A.; Dreiss, C. A.

Selective tuning of the self-assembly and gelation of a hydrophilic poloxamine by cyclodextrins

Four-arm block copolymer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), Native CDs (α, β, γ-CD), Dimethylated-β-CD, Sulfated sodium salt of β-CD

Langmuir, 2015, 31, 5645-5655; DOI:10.1021/acs.langmuir.5b01081

Gonzalez-Gaitano, G.; Muller, C.; Radulescu, A.; Dreiss, C. A.

Modulating the self-assembly of amphiphilic X-shaped block copolymers with cyclodextrins: Structure and mechanisms

Native CDs, DIMEB, Hydroxypropylated CDs

Langmuir, 2015, 31, 4096-4105; DOI:10.1021/acs.langmuir.5b00334

Halaszova, S.; Jerigova, M.; Lorenc, D.; Velic, D.

Preparation of cyclodextrin-iron species in water by laser ablation: Secondary ion mass spectrometry

C_{42}H_{67}O_{35}Na-Fe complex

Phase transition regulated by photo-controlled molecular recognition of alpha-cyclodextrin

Poly(ethylene glycol), Azobenzene, Thermo- and photo-responsive supramolecular system

Huang, P-C.; Lin, L-Y.; Yang, D-J.; Hong, J-L.

Rigid Jeffamine-included polyrotaxane as hydrogen-bond template for salicylideneazine with aggregation-enhanced emission

Luminogen of 1,2-bis(2,4-dihydroxybenzylidene)hydrazine, β-CD

RSC Advances, 2015, 5, 37979-37987; DOI:10.1039/C5RA05215G

Iza, N.; Guerrero-Martinez, A.; Tardajos, G.; Ortiz, M. J.; Palao, E.; Montoro, T.; Radulescu, A.; Dreiss, C. A.; Gonzalez-Gaitano, G.

Using inclusion complexes with cyclodextrins to explore the aggregation behavior of a ruthenium metallosurfactant
β-CD, γ-CD, Breakup of the micelles, Bis(2,2’-bipyridine)(4,4’-ditridecyl-2,2’-bipyridine)ruthenium(II) dichloride (Ru24C13)
Langmuir, 2015, 31, 2677-2688; DOI:10.1021/la504929x

Jiang, Z-P.; Shangguan, Y-G.; Zheng, Q.
Rheological behavior of ferrocene-modified polyacrylamide in aqueous solutions
Viscosity, β-Cyclodextrin
Gaofenzi Xuebao, 2015, 120-126; DOI:10.11777/j.issn1000-3304.2015.14219

Adhesion between semihard polymer materials containing cyclodextrin and adamantane based on host-guest interactions
Polyacrylamide xerogel, Competitive experiments, Self-healable semihard material
Macromolecules (Washington, DC, United States), 2015, 48, 732-738; DOI:10.1021/ma502316d

Kellner, I. D.; Drewello, T.
Influence of single skimmer versus dual funnel transfer on the appearance of ESI-generated LiCl cluster/β-cyclodextrin inclusion complexes
Singly and doubly charged adducts of LiCl with β-cyclodextrin
Journal of the American Society for Mass Spectrometry, 2015, 26, 1328-1337; DOI:10.1007/s13361-015-1137-7

Surface energy-driven growth of crystalline PbS octahedra and dendrites in the presence of cyclodextrin-surfactant supramolecular complexes
Morphology, Self-assembled branched/dendritic structures
Journal of Nanoparticle Research, 2015, 17, 1-11; DOI:10.1007/s11051-015-2919-3

Lazzara, G.; Milioto, S.; Schimmenti, R.
Thermodynamics of cyclodextrin-star copolymer threading-dethreading process
Copolymer aggregation, Temperature responsive behavior

Liu, B.; Li, Y.; Xiao, H.; Liu, Y.; Mo, H.; Ma, H.; Liang, G.
Characterization of the supermolecular structure of polydatin/6-O-α-maltosyl-β-cyclodextrin inclusion complex
Molecular docking
Journal of food science, 2015, 80, C1156-61; DOI:10.1111/1750-3841.12845

Liu, T.; Shi, F.; Boussouar, I.; Zhou, J.; Tian, D.; Li, H.
Liquid quantum dots constructed by host-guest interaction
β-Cyclodextrin, Adamantane, Optical performance, Polyethylene glycol, Self-assembly
ACS Macro Letters, 2015, 4, 357-360; DOI:10.1021/mz500803w
Mohamed, M. H.; Wilson, L. D.; Headley, J. V.; Peru, K. M.

Thermodynamic properties of inclusion complexes between β-cyclodextrin and naphthenic acid fraction components

- **Spectral displacement technique, n-Octanoic acid, Trans-4-pentylcyclohexanecarboxylic acid, Dicyclohexylacetic acid, Oil sands process water**

Energy & Fuels, 2015, 29, 3591-3600; DOI:10.1021/acs.energyfuels.5b00289

Motoyanagi, J.; Kurata, A.; Minoda, M.

Self-assembly behavior of amphiphilic C60-end-capped poly(vinyl ether)s in water and dissociation of the aggregates by the complexing of the C60 moieties with externally added γ-cyclodextrins

- **Strong host molecule, Amphiphilic poly(2-methoxyethyl vinyl ether) terminated fullerene, Synthesized by living cationic polymerization**

Langmuir, 2015, 31, 2256-2261; DOI:10.1021/la504341s

Nan, S. Y.; Fang, Z. Y.; Jun, Z. W.

Preparation and characterization of inclusion complex between β-cyclodextrin and polylactic acid

- **Co-precipitation method, Thermal stability**

Polymer (Korea), 2015, 39, 261-267; DOI:10.7317/pk.2015.39.2.261

Ning, J.; Wang, Y.; Wu, Q.; Zhang, X.; Lin, X.; Zhao, H.

Novel supramolecular assemblies of repulsive DNA-anionic porphyrin complexes based on covalently modified multi-walled carbon nanotubes and cyclodextrins

- **α-CD, β-CD, Binding of anionic porphyrins with DNA**

RSC Advances, 2015, 5, 21153-21160; DOI:10.1039/C4RA15741A

To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

- **β-Cyclodextrin as an external cage**

Physical Chemistry Chemical Physics, 2015, 17, 14513-14517; DOI:10.1039/C5CP02362A

Park, C.; Kim, K. T.

Pillar[n]arenes and other cavitands: Aspects of complex thermodynamics

- **Comparison with other successful cavitands, such as cyclodextrins**

Chinese Journal of Chemistry, 2015, 33, 311-318; DOI:10.1002/cjoc.201400875

Pellegrino Vidal, R. B.; Ibanez, G. A.; Escandar, G. M.

Spectrofluorimetric study of phenolic endocrine disruptors in cyclodextrin media

- **Bisphenol A, 4-Octylphenol, 4-Nonylphenol, Hydroxyethyl-βCD, DIMEB**

RSC Advances, 2015, 5, 20914-20923; DOI:10.1039/C4RA13023E

Electrochemical redox responsive supramolecular self-healing hydrogels based on host-guest interaction
β-Cyclodextrin, Ferrocene, Biocompatibility, Drug release
Polymer Chemistry, 2015, 6, 3652-3659; DOI:10.1039/C5PY00296F

Popr, M.; Filippov, S. K.; Matushkin, N.; Dian, J.; Jindrich, J.
Properties of cationic monosubstituted tetraalkylammonium cyclodextrin derivatives - their stability, complexation ability in solution or when deposited on solid anionic surface

Resistance towards the Hofmann degradation, Salicylic acid, p-Methoxyphenol, p-Nitroaniline, Nafion 117 membrane
Beilstein Journal of Organic Chemistry, 2015, 11, 192-199; DOI:10.3762/bjoc.11.20

Punitha, S.; Uvarani, R.; Panneerselvam, A.
Acoustical and spectroscopic studies in aqueous solutions of polymer and dextrin's binary complex formation

Poly ethylene glycol, Maltodextrin, β-Cyclodextrin, Amylose, Polymer dextrin's interactions
International Journal of ChemTech Research, 2015, 7, 629-638

Qi, Y.; Geib, T.; Volmer, D. A.
Determining the binding sites of β-cyclodextrin and peptides by electron-capture dissociation high resolution tandem mass spectrometry

Binding sites on the protein surface, Fourier-transform ion cyclotron resonance
Journal of the American Society for Mass Spectrometry, 2015, 26, 1143-1149; DOI:10.1007/s13361-015-1118-x

Reyes-Reyes, M. L.; Roa-Morales, G.; Melgar-Fernandez, R.; Reyes-Perez, H.; Gomez-Olivan, L. M.; Gonzalez-Rivas, N.; Bautista-Renedo, J.; Balderas-Hernandez, P.
Chiral recognition of abacavir enantiomers by (2-hydroxy)propyl-β-cyclodextrin: UHPLC, NMR and DFT studies

Enantio-differentiation, Density functional theory
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 373-382; DOI:10.1007/s10847-015-0499-6

Sancho, M. I.; Russo, M. G.; Moreno, M. S.; Gasull, E.; Blanco, S. E.; Narda, G. E.
Physicochemical characterization of 2-hydroxybenzophenone with β-cyclodextrin in solution and solid state

Phase solubility, Aggregates, Inclusion complex, FTIR, DSC, TGA
Journal of Physical Chemistry B, 2015, 119, 5918-5925; DOI:10.1021/acs.jpcb.5b01742

Semino, R.; Rodriguez, J.
Molecular dynamics study of ionic liquids complexation within β-cyclodextrins

1-Dodecyl-3-methylimidazolium, 1-Butyl-3-methylimidazolium, Head-to-tail
Journal of Physical Chemistry B, 2015, 119, 4865-4872; DOI:10.1021/acs.jpcb.5b00909

Shao, L.; Zhou, J.; Hua, B.; Yu, G.
A dual-responsive supra-amphiphile based on a water-soluble pillar[7]arene and a naphthalene dimide-containing guest

α-Cyclodextrin

Synthesis and surface grafting of a β-cyclodextrin dimer facilitating cooperative inclusion of 2,6-ANS

Azide-functionalised quartz surfaces, 2-Anilinonaphthalene-6-sulfonic acid

3. CDs in Drug Formulation

Cardiac depression induced by cocaine or cocaethylene is alleviated by lipid emulsion more effectively than by sulfobutylether-β-cyclodextrin

Isolated heart model, Rats, Mild cardiodepressant effect

Academic emergency medicine: Official journal of the Society for Academic Emergency Medicine, 2015, 22, 508-517; DOI:10.1111/acem.12657

Fraix, A.; Kandoth, N.; Gref, R.; Sortino, S.

A multicomponent gel for nitric oxide photorelease with fluorescence reporting

Poly-β-cyclodextrin polymer, Hydrophobically modified dextran, Visible light excitation, Remote-controlled release

Gidwani, B.; Vyas, A.

Inclusion complexes of bendamustine with β-CD, HP-β-CD and Epi-β-CD: In-vitro and in-vivo evaluation

In-vivo pharmacokinetic study, Complexation, Dissolution, Phase solubility, Polymerized cyclodextrin

Drug development and industrial pharmacy, 2015, In press; DOI:10.3109/03639045.2015.1027217

Giglio, V.; Oliveri, V.; Viale, M.; Gangemi, R.; Natile, G.; Intini, F. P.; Vecchio, G.

Folate-cyclodextrin conjugates as carriers of the platinum(iv) complex LA-12

Cis-trans-cis-[PtCl₂(CH₃CO₂)₂(adamantylamine)(NH₃)], Breast cancer cell

ChemPlusChem, 2015, 80, 536-543; DOI:10.1002/cplu.201402342

Glisoni, R.; Quintana, S.; Molina, M.; Calderon, M.; Moglioni, A. G.; Sosnik, A.

Chitosan-g-oligo(epsilon-caprolactone) polymeric micelles: Microwave-assisted synthesis and physicochemical and cytocompatibility characterization

Mucoadhesive polymeric micelles, Solvent diffusion/evaporation method, Rifampicin

Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3, 4853-4864; DOI:10.1039/CSTB00594A
Glisoni, R. J.; Castro, E. F.; Cavallaro, L. V.; Moglioni, A. G.; Sosnik, A.

Complexation of a 1-indanone thiosemicarbazone with hydroxypropyl-β-cyclodextrin enhances its activity against a hepatitis C virus surrogate model

Self-aggregation tendency, Hydroxypropyl-β-cyclodextrin

Journal of Nanoscience and Nanotechnology, 2015, 15, 4224-4228; DOI:10.1166/jnn.2015.9613

Sagunja-Tang improves lipid related disease in a postmenopausal rat model and HepG2 cells

Sagunja-Tang, Methyl-β-cyclodextrin-induced HepG2 cells

Evidence-based complementary and alternative medicine : eCAM, 2015, 2015, 321407/1-13; DOI:10.1155/2015/321407

Gopalan, P. R.; Subramaniam, P.; Selvi, A. G. A.

Spectroscopic study of bifenox complexation with α-, β- and γ-cyclodextrin in solution and solid state

Job’s method, Benesi-Hildebrand method

American Chemical Science Journal, 2015, 6, 115-125; DOI:10.9734/ACSJ/2015/16078

Gu, W-X.; Li, Q-L.; Lu, H.; Fang, L.; Chen, Q.; Yang, Y-W.; Gao, H.

Construction of stable polymeric vesicles based on azobenzene and beta-cyclodextrin grafted poly(glycerol methacrylate)s for potential applications in colon-specific drug delivery

Cargo-loaded vesicles

Chemical Communications (Cambridge, United Kingdom), 2015, 51, 4715-4718; DOI:10.1039/C5CC00628G

Gyanani, V.; Siddalingappa, B.; Betageri, G. V.

Evaluation of various processes for simultaneous complexation and granulation to incorporate drug-cyclodextrin complexes into solid dosage forms

Ibuprofen, Glyburide, Co-evaporation, Spray granulation, Fluid bed processing (FBP)

Drug development and industrial pharmacy, 2015, In press; DOI:10.3109/03639045.2015.1018273

Hani, U.; Krishna, G.; Shivakumar, H. G.

Design and optimization of clotrimazole-hydroxypropyl-β-cyclodextrin bioadhesive vaginal tablets using Anacardium occidentale gum by 32 factorial design

Mucoadhesion, Fungal infections, Bioavailability

RSC Advances, 2015, 5, 35391-35404; DOI:10.1039/C5RA04305K

Safety data on 19 vehicles for use in 1 month oral rodent pre-clinical studies: Administration of hydroxypropyl-β-cyclodextrin causes renal toxicity

Rats, 30 % (w/v) Hydroxypropyl-β-cyclodextrin, Liver enzymes (AST, ALT and GLDH), Urinary volume, Kidneys (tubular vacuolation and tubular pigment)

Journal of Applied Toxicology, 2015, In press; DOI:10.1002/jat.3155

Design and evaluation of the highly concentrated human IgG formulation using cyclodextrin polypseudorotaxane hydrogels

Polyethylene glycol, α-CD, γ-CD, Release profiles, Stabilities

AAPS PharmSciTech, 2015, In press; DOI:10.1208/s12249-015-0309-x

Hodina, D. M.; Kobrina, L. V.; Kalashnikova, L. E.; Metelitsya, L. O.; Rogal'skii, S. P.; Tarasyuk, O. P.; Ryabov, S. V.; Laptii, S. V.

Antimicrobial properties and toxicity of imidazolium ionic liquids and their complexes with β-cyclodextrin

1-Dodecyl-3-methylimidazolium tetrafluoroborate

Dopovidi Natsional’noi Akademii Nauk Ukraini, 2015, 107-113

Development of a therapeutic agent for menkes disease: solubilization of a copper-disulfiram complex

Neurodegenerative disorder, Deficiency of a copper-transporting ATPase, β-CD, Hydroxypropyl-β-CD

Yakugaku Zasshi, 2015, 135, 493-499; DOI:10.1248/yakushi.14-00188

Hossain, M. F.; Gong, R. H.; Rigout, M.

Preparation and characterization of poly(ethylene oxide)-loaded hydroxypropyl-β-cyclodextrin nanofibers

HP-β-CD/PEO blends, Spinning

Polymers for Advanced Technologies, 2015, 26, 1184-1188; DOI:10.1002/pat.3552

Hou, X-F.; Chen, Y.; Liu, Y.

Enzyme-responsive protein/polysaccharide supramolecular nanoparticles

Sulfato-β-cyclodextrin, Protamine, Trypsin-triggered disassembly, Controlled drug release

Soft Matter, 2015, 11, 2488-2493; DOI:10.1039/C4SM02896A

Formation of the ternary inclusion complex of limaprost with α- and β-cyclodextrins in aqueous solution

Prostaglandin F2α, Dehydration, Isomerization

Chemical & pharmaceutical bulletin, 2015, 63, 318-25; DOI:10.1248/cpb.c14-00733

Jayaprabha, K. N; Joy, P.I A.

Citrate modified β-cyclodextrin functionalized magnetite nanoparticles: A biocompatible platform for hydrophobic drug delivery

Curcumin, Release profile, Contrast enhancement in MRI

RSC Advances, 2015, 5, 22117-22125; DOI:10.1039/C4RA16044D

Jelic, R.; Tomovic, M.; Stojanovic, S.; Jokovic, L.; Jakovljevic, I.; Djurdjevic, P.

Study of inclusion complex of β-cyclodextrin and levofloxacin and its effect on the
solution equilibria between gadolinium(III) ion and levofloxacin

Benesi-Hildebrand equation, Computer simulation

Monatshfte fuer Chemie, 2015, 146, 1621-1630; DOI:10.1007/s00706-015-1482-z

Nonclinical evaluation of novel cationically modified polysaccharide antidotes for unfractionated heparin

Cationic derivatives of dextran, hydroxypropylcellulose, pullulan and γ-cyclodextrin, Glycidyltrimethylammonium chloride

PloS one, 2015, 10, e0119486; DOI:10.1371/journal.pone.0119486

Kang, Y.; Ma, Y.; Zhang, S.; Ding, L-S.; Li, B-J.

Dual-stimuli-responsive nanoassemblies as tunable releasing carriers

Methoxy polyethylene glycol-ferrocene, Poly(N-isopropylacrylamide)-β-cyclodextrin, H₂O₂ and thermo dual-controlled drug release, Supramolecular inclusion complex, Self-assembly

ACS Macro Letters, 2015, 4, 543-547; DOI:10.1021/acsmacrolett.5b00171

Kaur, S.; Kaur, L.

Colon targeting of ornidazole and curcumin inclusion complex a novel approach in inflammatory bowel disease

Kneading method

Pharma Innovation, 2015, 3, 94-98

Investigation of the interactions of silibinin with 2-hydroxypropyl-β-cyclodextrin through biophysical techniques and computational methods

pH States simulating those of the upper gastrointestinal tract, Antiproliferative activity, Complex

Molecular Pharmaceutics, 2015, 12, 954-965; DOI:10.1021/mp5008053

Kiser, T. H.; Fish, D. N.; MacLaren, R.; Aquilante, C. L.; Rower, J. E.; Wempe, M. F.; Teitelbaum, I.

Evaluation of sulfobutylether-β-cyclodextrin (SBECD) accumulation and voriconazole pharmacokinetics in critically ill patients undergoing continuous renal replacement therapy

Prospective, open-label pharmacokinetic study, Continuous venovenous hemofiltration

Koner, A. L.; Pal, K.; Mallick, S.

Complexation-induced fluorescence and acid-base properties of dapoxyl dye with γ-cyclodextrin: A drug-binding application using displacement assay

Ibuprofen, Paracetamol, Me Salicylate, Salicylic acid, Aspirin, Piroxicam, Resazurin, Thiamphenicol, Chloramphenicol, Ampicillin, Kanamycin, Sorbic acid

Physical Chemistry Chemical Physics, 2015, 17, 16015-16022; DOI:10.1039/C5CP01696G
Kwon, Y-D.; Yang, D. H.; Lee, D-W.

A titanium surface-modified with nano-sized hydroxyapatite and simvastatin enhances bone formation and osseointegration

β-Cyclodextrin-immobilized hydroxyapatite powders, Dental implants
Journal of Biomedical Nanotechnology, 2015, 11, 1007-1015; DOI:10.1166/jbn.2015.2039

Lampropoulou, M.; Misiakos, K.; Paravatou, M.; Mavridis, I. M.; Yannakopoulou, K.

Synthesis of cyclodextrin derivatives with monosacharides and their binding with ampicillin and selected lectins

Bacterial lectin recognition, Encapsulate antibiotics
ARKIVOC (Gainesville, FL, United States), 2015, 232-243; DOI:10.3998/ark.5550190.p009.003

Lange, K.; Gierlach-Hladon, T.

Solid state characterization of α-tocopherol in inclusion complexes with cyclodextrins

Lyophilization, Kneading, Protective effect, β-CD, 2-HP-β-CD
Acta Poloniae Pharmaceutica, 2015, 72, 21-30

Lee, D.; Kalu, U.; Halford, J. J.; Biton, V.; Cloyd, J.; Klein, P.; Bekersky, I.; Peng, G.; Dheerendra, S.; Tolbert, D.

Intravenous carbamazepine as short-term replacement therapy for oral carbamazepine in adults with epilepsy: Pooled tolerability results from two open-label trials

Intravenous carbamazepine formulation solubilized in a cyclodextrin matrix
Epilepsia, 2015, 56, 906-914; DOI:10.1111/epi.12991

Lemma, S. M.; Scampicchio, M.; Mahon, P. J.; Sbarski, I.; Wang, J.; Kingshott, P.

Controlled release of retinyl acetate from β-cyclodextrin functionalized poly(vinyl alcohol) electrospun nanofibers

Thermal stability, Functional nanofibers
Journal of Agricultural and Food Chemistry, 2015, 63, 3481-3488; DOI:10.1021/acs.jafc.5b00103

Li, S.; Yue, J.; Zhou, W.; Li, L.

An investigation into the preparation, characterization and antioxidant activity of puerarin/cyclodextrin inclusion complexes

β-CD, HP-β-CD, Me-β-CD, thermal stability, Herbal medicine

Li, J-M.; Zhang, W.; Su, H.; Wang, Y-Y.; Tan, C-P.; Jì, L-N.; Mao, Z-W.

Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethyleneimine hydroxypropyl-β-cyclodextrin nanocarrier

Combining chemotherapy and RNA interference (RNAi) therapy, HP-β-CD, High cellular uptake, Apoptosis, Tumor targeting
International journal of nanomedicine, 2015, 10, 3147-3162; DOI:10.2147/IJN.S67146
Li, Y.; Guo, H.; Gan, J.; Zheng, J.; Zhang, Y.; Wu, K.; Lu, M.

Novel fast thermal-responsive poly(N-isopropylacrylamide) hydrogels with functional cyclodextrin interpenetrating polymer networks for controlled drug release

Poly[(N-isopropylacrylamide)-co-(aminoethyl methacrylate β-cyclodextrin)], Rapid swelling/deswelling kinetics, Fast thermal response, Levofloxacin lactate

Journal of Polymer Research, 2015, 22, 1-14; DOI:10.1007/s10965-015-0720-8

Liao, R.; Zhao, Y.; Liao, X.; Liu, M.; Gao, C.; Yang, J.; Yang, B.

Folic acid-polyamine-β-cyclodextrin for targeted delivery of scutellarin to cancer cells

Antitumor activity, Folate mediation, Inclusion complex

Polymers for Advanced Technologies, 2015, 26, 487-494; DOI:10.1002/pat.3477

Lim, S. M.; Pang, Z. W.; Tan, H. Y.; Shaikh, M.; Adinarayana, G.; Garg, S.

Enhancement of docetaxel solubility using binary and ternary solid dispersion systems

Solid dispersion, Soluplus, Hydroxypropyl-β-cyclodextrin, Micellization, Freeze-drying

Drug development and industrial pharmacy, 2015, In press

Liu, Y.; Yuan, X.

Preparation and characterization of a ternary inclusion complex comprising the norfloxacin/β-cyclodextrin complex incorporated in a liposome

Multilamellar vesicles, Soybean phospholipids, Cholesterol, Ternary structure

Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 311-321; DOI:10.1007/s10847-015-0483-1

Reversible photo-responsive vesicle based on the complexation between an azobenzene containing molecule and α-cyclodextrin

UV irradiation, Switchable biometric membranes, Photo-controllable release

RSC Advances, 2015, 5, 32846-32852; DOI:10.1039/C5RA04597E

Liu, C-H.; Lai, K-Y.; Wu, W-C.; Chen, Y-J.; Lee, W-S.; Hsu, C-Y.

In vitro scleral lutein distribution by cyclodextrin containing nanoemulsions

Hybrid nanocarriers, β-Cyclodextrin, Hydroxyethyl-βCD, Scleral accumulation, Eye health

Chemical & Pharmaceutical Bulletin, 2015, 63, 59-67; DOI:10.1248/cpb.c14-00318

Lopes, C. M.; Coelho, P. B.; Oliveira, R.

Novel delivery systems for anti-allergic agents: Allergic disease and innovative treatments

Review, Cyclodextrins, Liposomes, Micelles, Microemulsions, Nano and microparticles

Current drug delivery, 2015, 12, 382-396; DOI:10.2174/1567201812666150421111222

In vitro and in vivo evaluation of novel cross-linked saccharide based polymers as bile acid sequestrants

Hypercholesterolemia, β-CD, Starch, Dextrin, Divinyl sulfone, Rats, Creatinine

Molecules, 2015, 20, 3716-3729; DOI:10.3390/molecules20033716
β-Cyclodextrin as water-solubility enhancer for butylated hydroxytoluene

Antioxidant properties

An indicator-guided photo-controlled drug delivery system based on mesoporous silica/gold nanocomposites

*Azobenzene, Metalloproteinase, Poly(ethylene glycol), α,β-Cyclodextrin dimer "bridge"

Nano Research, 2015, 8, 1893-1905; DOI:10.1007/s12274-014-0698-2

Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells

Silibinin, Quercetin, Amphiphilic cyclodextrin, Anti-proliferative activity, Multicavity system

Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3, 4074-4081; DOI:10.1039/C5TB00564G

Maswal, M.; Chat, O. A.; Dar, A. A.

Rheological characterization of multi-component hydrogel based on carboxymethyl cellulose: insight into its encapsulation capacity and release kinetics towards ibuprofen

Semi-interpenetrating polymer network, CM-cellulose, Polyvinylpyrrolidone, Acrylic acid, α-Cyclodextrin, Free-radical solution polymerization

Colloid and Polymer Science, 2015, 293, 1723-1735; DOI:10.1007/s00396-015-3545-4

Mehboob, A. A. R.; Ramnath, N. S.; Satish, W. C.

Natural polysaccharides as drug targeting tool to colon: Recent applications and future prospective

Controlled release system, Chitosan, Pectin, Chondroitin sulfate, Cyclodextrin, Dextrans, Guar gum, Inulin, Amylose, Locust bean gum

International Journal of Pharmaceutical, Chemical and Biological Sciences, 2015, 5, 440-455

Meka, V. S.; Pillai, S.; Dharmalingham, S. R.; Sheshala, R.; Gorajana, A.

Preparation and in vitro characterization of a non-effervescent floating drug delivery system for poorly soluble drug, glipizide

Solid dispersion, Poloxamer, Cyclodextrin, Povidone, In vitro buoyancy and dissolution studies

Acta Poloniae Pharmaceutica, 2015, 72, 193-204

Meredith, M. E.; Salameh, T. S.; Banks, W. A.

Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases

Review, Blood-brain barrier, Cyclodextrins, Albumin, Exendin/GLP-1, GALP, Insulin, Leptin, PACAP

The AAPS journal, 2015, 17, 780-787; DOI:10.1208/s12248-015-9719-7
Miller, K. P.; Chen, Y-P.; Decho, A. W.; Wang, L.; Pellechia, P. J.; Benicewicz, B. C.

Engineering nanoparticles to silence bacterial communication

Quorum sensing, Silicon dioxide nanoparticles, Acylhomoserine lactones, Surface functionalized with β-cyclodextrin, Resistance, Nanomedicine

Frontiers in microbiology, 2015, 6, 189; DOI:10.3389/fmicb.2015.00189

Beneficial effects of a lupeol-cyclodextrin complex in a murine model of photochemical skin carcinoma

Anti-inflammatory and antitumoral properties, Medicinal plants

Revista de Chimie (Bucharest, Romania), 2015, 66, 373-377

Mizusako, H.; Tagami, T.; Hattori, K.; Ozeki, T.

Active drug targeting of a folate-based cyclodextrin-doxorubicin conjugate and the cytotoxic effect on drug-resistant mammary tumor cells in vitro

pH-Cleavable spacer, Cellular uptake, Drug-resistant malignant cancers

Journal of Pharmaceutical Sciences, 2015, 104, 2934-2940; DOI:10.1002/jps.24428

Mohammed, N. N.; Pandey, P.; Khan, N. S.; Elokely, K. M.; Liu, H.; Doerksen, R. J.; Repka, M.

Clotrimazole-cyclodextrin-based approach for the management and treatment of Candidiasis - A formulation and chemistry-based evaluation

Co-precipitation, Phase solubility, Sustained release, Complexation, Computational molecular modeling

Pharmaceutical development and technology, 2015, In press

Monterrubio, C.; Paco, S.; Vila-Ubach, M.; Rodriguez, E.; Glisoni, R.; Lavarrino, C.; Schaiquevich, P.; Soznik, A.; Mora, J.; Carcaboso, A. M.

Combined microdialysis-tumor homogenate method for the study of the steady state compartmental distribution of a hydrophobic anticancer drug in patient-derived xenografts

HP-β-CD, Extravasation, Neuroblastoma, Efficient cellular penetration, SN-38 (7-ethyl-10-hydroxycamptothecin)

Pharmaceutical Research, 2015, 32, 2889-2900; DOI:10.1007/s11095-015-1671-9

Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma

Autophagic cell death, Ihara cells(a human melanoma cell line expressing FR-α)

Biological & Pharmaceutical Bulletin, 2015, 38, 374-379; DOI:10.1248/bpb.b14-00531

Stable and efficient paclitaxel nanoparticles for targeted glioblastoma therapy

Polyethylene glycol-coated magnetic iron oxide NP conjugated with cyclodextrin and chlorotoxin

Advanced Healthcare Materials, 2015, 4, 1236-1245; DOI:10.1002/adhm.201500034
Murthy, R. V.; Bavireddi, H.; Gade, M.; Kikkeri, R.

Exploiting the lactose-GM3 interaction for drug delivery

Lactose-functionalized β-cyclodextrin hosting doxorubicin, B16 melanoma cells

ChemMedChem, 2015, 10, 792-796; DOI:10.1002/cmdc.201500046

Nagai, N.; Yoshioka, C.; Ito, Y.

Topical therapies for rheumatoid arthritis by gel ointments containing indomethacin nanoparticles in adjuvant-induced arthritis rat

Inflammation, 2-Hydroxypropyl-β-cyclodextrin, Pharmacokinetics

Journal of Oleo Science, 2015, 64, 337-346; DOI:10.5650/jos.ess14170

Solubilisation of a 2,2-diphenyl-1-picrylhydrazyl radical in water by β-cyclodextrin to evaluate the radical-scavenging activity of antioxidants in aqueous media

Antioxidative activity, Ascorbate, Trolox

Chemical Communications (Cambridge, United Kingdom), 2015, 51, 8311-8314; DOI:10.1039/C5CC02236C

Nayak, N.; Gopidas, K. R.

Unusual self-assembly of a hydrophilic β-cyclodextrin inclusion complex into vesicles capable of drug encapsulation and release

Doxorubicin, Competitive inclusion binder, Adamantane carboxylate

Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3, 3425-3428; DOI:10.1039/C4TB02114B

Niikura, K.

Multidentate coating of maltooligosaccharides allows nuclear import of nanoparticles

Seikagaku, 2015, 87, 64-67; DOI:10.14952/SEIKAGAKU.2015.870064

Nishida, K.; Tamura, A.; Yui, N.

Acid-labile polyrotaxane exerting endolysosomal pH-sensitive supramolecular dissociation for therapeutic applications

Pluronic/β-cyclodextrin, Acid cleavable ketal linkage, Reduction of lysosomal cholesterol in Niemann-Pick type C

Polymer Chemistry, 2015, 6, 4040-4047; DOI:10.1039/C5PY00445D

Octavia, M. D.; Halim, A.; Zaini, E.

Preparation of simvastatin-β-cyclodextrin inclusion complexes using co-evaporation technique

Phase solubility studies, Dissolution profiles

Journal of Chemical and Pharmaceutical Research, 2015, 7, 740-747

Hydroxypropyl-β-cyclodextrin spikes local inflammation that induces Th2 cell and T follicular helper cell responses to the coadministered antigen

Immunological properties, HP-β-CD-adjuvanted influenza hemagglutinin split vaccine, Cynomolgus macaques, MyD88- and Tbk1-dependent T follicular helper cell adjuvant Journal of Immunology, 2015, 194, 2673-2682; DOI:10.4049/jimmunol.1402027

Osman, S. K.; Soliman, G. M.; Abd, E. R. S.

Physically cross-linked hydrogels of β-cyclodextrin polymer and poly(ethylene glycol)-cholesterol as delivery systems for macromolecules and small drug molecules

IgG, Riluzole, Biocompatibility
Current drug delivery, 2015, 12, 415-424

Complex of rutin with β-cyclodextrin as potential delivery system

Co-grinding, Antibacterial potency, Antioxidative activity
PloS one, 2015, 10, e0120858; DOI:10.1371/journal.pone.0120858

Effect of postnatal progesterone therapy following preterm birth on neurosteroid concentrations and cerebellar myelination in guinea pigs

Allopregnanolone, Vehicle 2-hydroxypropyl-β-cyclodextrin
Journal of development origins of health and disease, 2015, 6, 350-361; DOI:10.1017/S2040174415001075

Qiu, X-L.; Li, Q-L.; Zhou, Y.; Jin, X-Y.; Qi, A-D.; Yang, Y-W.

Sugar and pH dual-responsive snap-top nanocarriers based on mesoporous silica-coated Fe₃O₄ magnetic nanoparticles for cargo delivery

Covalent installation of a layer of β-cyclodextrins on the outer surfaces
Chemical Communications (Cambridge, United Kingdom), 2015, 51, 4237-4240; DOI:10.1039/C4CC10413G

Raghad, A-N.; Hind, E-Z.

Enhancement of candesartan cilexetil dissolution rate by using different methods

Polyethylene glycol, Hydroxypropyl-β-cyclodextrin, Kneading
Asian Journal of Pharmaceutical and Clinical Research, 2015, 8, 320-326

Rodell, C. B.; Wade, R. J.; Purcell, B. P.; Dusaj, N. N.; Burdick, J. A.

Selective proteolytic degradation of guest-host assembled, injectable hyaluronic acid hydrogels

Hyaluronic acid separately modified by adamantane or cyclodextrin, Shear-thinning, Self-healing, Therapeutic delivery (e.g., growth factors, cells)
ACS Biomaterials Science & Engineering, 2015, 1, 277-286; DOI:10.1021/ab5001673

Paediatric drug development of ramipril: Reformulation, in vitro and in vivo evaluation
Oral liquid formulations, HP-β-CD, In vivo evaluation
Journal of drug targeting, 2015, In press

Salah, F.; El Ghoul, Y.; Roudesli, S.

Bacteriological effects of functionalized cotton dressings
Wound dressings, Grafting of a polymer-based β-CD, Methylene Blue, Initial burst release, Zero-order release
Journal of the Textile Institute, 2015, In press; DOI:10.1080/00405000.2015.1019247

Salem, M.; Xia, Y.; Allan, A.; Rohani, S.; Gillies, E. R.
Curcumin-loaded, folic acid-functionalized magnetite particles for targeted drug delivery
Amine-terminated poly(propylene glycol), β-CD, Targeting cancer cells overexpressing the FA receptor, Human breast cancer cells
RSC Advances, 2015, 5, 37521-37532; DOI:10.1039/C5RA01811K

Formulation approaches to improving the delivery of an antiviral drug with activity against seasonal flu
Noscapine hydrochloride, Hydroxypropyl-β-cyclodextrin, Sulfobutylether cyclodextrins, Bioavailability

Sandersen, C.; Cerri, S.; Franck, T.; Bienzle, D.; Derochette, S.; Neven, P.; Mouytis-Mickalad, A.; Serteyn, D.
Effect of inhaled hydrosoluble curcumin on inflammatory markers in broncho-alveolar lavage fluid of horses with LPS-induced lung neutrophilia
Lyisin salt of curcumin incorporated in β-CD (NDS27), Inflammatory cytokines and proteins, Randomized cross-over design, Airway inflammation, Lipopolysaccharides
Multidisciplinary respiratory medicine, 2015, 10, 16; DOI:10.1186/s40248-015-0010-7

Sanz, R.; Calpena, A. C.; Mallandrich, M.; Clares, B.
Enhancing topical analgesic administration: Review and prospect for transdermal and transbuccal drug delivery systems
Penetration of drugs through human skin, Physical or chemical enhancers, Cyclodextrins
Current pharmaceutical design, 2015, 21, 2867-2882

Savic, I. M.; Nikolic, V. D.; Savic-Gajic, I.; Nikolic, L.; B.; Radovanovic, B. C.; Mladenovic, J. D.
Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin
Anti-inflammatory, Anti-oxidative, Anti-cancer, Anti-age activity, Cardiovascular disorders, Co-precipitation method, Phase solubility study, Photostability
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 383-394; DOI:10.1007/s10847-015-0500-4

Fosinopril sodium-hydroxypropyl-β-cyclodextrin inclusion complex - Thermal decomposition kinetics and compatibility studies

Angiotensin-converting enzyme inhibitors, Bioavailability, Magnesium stearate

Sugar-responsive pseudopolyrotaxanes and their application in sugar-induced release of PEGylated insulin
Phenylboronic acid-modified γ-cyclodextrin, Naphthalene-modified polyethylene glycol
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 417-424; DOI:10.1007/s10847-015-0504-0

Sharma, N. K.; Kumar, V.
Liposomal paclitaxel: Recent trends and future perspectives
Anti-cancer agents, Cyclodextrins
International Journal of Pharmaceutical Sciences Review and Research, 2015, 31, 205-211

Shen, J.; Xu, G.; Xin, X.; Wang, L.; Song, Z.; Zhang, H.; Tong, L.; Yang, Z.
Supramolecular hydrogels of α-cyclodextrin/reverse poloxamines/carbon-based nanomaterials and its multi-functional application
Diblock arms, Poly(propylene oxide)-poly(ethylene oxide), Hydrogen-bonding, Biocompatibility, Controlled release of anticancer drugs
RSC Advances, 2015, 5, 40173-40182; DOI:10.1039/C5RA04351D

Da Silva, C. M. G.; Fraceto, L. F.; Franz-Montan, M.; Couto, V. M.; Casadei, B. R.; Cereda, C. M. S.; De Eneida, P.
Development of egg PC/cholesterol/α-tocopherol liposomes with ionic gradients to deliver ropivacaine
Large multilamellar vesicle, Large multivesicular vesicle, Large unilamellar vesicle, Encapsulation efficiency, Sustained release

Solanki, P.; Upadhyay, P.; Shah, S.; Patel, J.
Formulation development and evaluation of mouth dissolving tablet of clozapine
Schizophrenia, HP-β-CD
World Journal of Pharmacy and Pharmaceutical Sciences, 2015, 4, 247-268

Nonfouling tunable βCD dextran polymer films for protein applications
1-Adamantanecarboxylic acid, 2-Anilinonaphthalene-6-sulfonic acid, Bovine serum albumin
ACS Applied Materials & Interfaces, 2015, 7, 4160-4168; DOI:10.1021/am508350r

Tamura, A.; Ikeda, G.; Nishida, K.; Yui, N.
Cationic polyrotaxanes as a feasible framework for the intracellular delivery and sustainable activity of anionic enzymes: A comparison study with methacrylate-based polycations
4. CDs in Cell Biology

Garcia, D. G.; De Castro-Faria-Neto, H. C.; Goncalves-de-Albuquerque, C. F.; Silva, A. R.; Da Silva, C. I.; De Souza e Souza, K. F. C.; Da Fonte de Amorim, L. M.; Burth, P.; Freire, A. S.; Santelli, R. E.; Diniz, L. P.; Gomes, F. C. A.; De Castro Faria, M. V.

Na/K-ATPase as a target for anticancer drugs: studies with perillyl alcohol

Methyl-β-cyclodextrin, Cholesterol depletion

Molecular cancer, 2015, 14, 105; DOI:10.1186/s12943-015-0374-5

Cell uptake mechanisms of glycosylated cationic pDNA-cyclodextrin nanoparticles

Transfectious nanocomplexes (gGlycoCDplexes), Internalization, 6-Amino-6-deoxy-D-glucopyranosyl-appended, mannosylated and non-glycosylated congeners, Galactose-specific peanut agglutinin (PNA) lectin, Clathrin-dependent, Caveolae-dependent, Macropinocytosis

RSC Advances, 2015, 5, 29135-29144; DOI:10.1039/C5RA00964B

Guo, Y.; Yang, L.; Haught, K.; Scarlata, S.

Osmotic stress reduces Ca^{2+} signals through deformation of Caveolae

Treatment with methyl-β-cyclodextrin, Signaling proteins

The Journal of biological chemistry, 2015, 290, 16698-16707; DOI:10.1074/jbc.M115.655126

Hu, H.; Song, H-Q.; Yu, B-R.; Cai, Q.; Zhu, Y.; Xu, F-J.

A series of new supramolecular polycations for effective gene transfection

Adamantane-functionalized α-CD derivatives, β-CD-cored polycations

Polymer Chemistry, 2015, 6, 2466-2477; DOI:10.1039/C4PY01756K

Hyaluronic acid-PEI-cyclodextrin polyplexes: Implications for in vitro and in vivo transfection efficiency and toxicity

Non-viral vectors, Cell viability

RSC Advances, 2015, 5, 41144-41154; DOI:10.1039/C5RA03283K
Kilpatrick, K.; Zeng, Y.; Hancock, T.; Segatori, L.

Genetic and chemical activation of TFEB mediates clearance of aggregated α-synuclein

Pharmacological activation, 2-Hydroxypropyl-β-cyclodextrin, Autophagic clearance

PloS one, 2015, 10, e0120819; DOI:10.1371/journal.pone.0120819

Cholesterol modulates open probability and desensitization of NMDA receptors

Cholesterol manipulation, Glutamate receptors, Cholesterol depletion by methyl-β-cyclodextrin, Cholesterol repletion

Journal of Physiology (Oxford, United Kingdom), 2015, 593, 2279-2293; DOI:10.1113/jphysiol.2014.288209

Involvement of cholesterol in Campylobacter jejuni cytolethal distending toxin-induced pathogenesis

Treatment of cells with methyl-β-cyclodextrin

Future Microbiology, 2015, 10, 489-501; DOI:10.2217/fmb.14.119

Lee, S.-J.; Jung, Y. H.; Oh, S. Y.; Song, E. J.; Choi, S. H.; Han, H. J.

Vibrio vulnificus VvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production in intestinal epithelial cells

Cytotoxic mechanism, Sequestration of cholesterol by methyl-β-cyclodextrin

Cell Death & Disease, 2015, 6, 1655; DOI:10.1038/cddis.2015.19

Li, W.; Liu, Y.; Du, J.; Ren, K.; Wang, Y.

Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection

Octa-arginine modified dextran gene vector, α-Cyclodextrin, Azobenzene, HEK293 T cells

Nanoscale, 2015, 7, 8476-8484; DOI:10.1039/C4NR07037B

The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice

Injections of methyl-β-cyclodextrin, Glucose tolerance test, Partial cholesterol removal from muscle fibers

American Journal of Physiology, 2015, 308, E294-E305; DOI:10.1152/ajpendo.00189.2014

Caveolae may enable albumin to enter human renal glomerular endothelial cells

Caveolae disrupting agents, Methyl-β-cyclodextrin, Nystatin

Journal of Cellular Biochemistry, 2015, 116, 1060-1069; DOI:10.1002/jcb.25061
Ni, I.; Ji, C.; Vij, N.

Second-hand cigarette smoke impairs bacterial phagocytosis in macrophages by modulating CFTR dependent lipid-rafts

Cystic fibrosis transmembrane conductance regulator, Methyl-β-cyclodextrin, Deplete CFTR from membrane lipid-rafts

PloS one, 2015, 10, e0121200; DOI:10.1371/journal.pone.0121200

Oliveri, V.; Bellia, F.; Vecchio, G.

Cyclodextrin 3-Functionalized with 8-Hydroxyquinoline as an Antioxidant Inhibitor of Metal-Induced Amyloid Aggregation

Disruption of metal and cholesterol homeostasis, Protein misfolding, Aggregation, Interaction of copper-Aβ and zinc-Aβ amyloid, Modified chelating cyclodextrins

ChemPlusChem, 2015, 80, 762-770; DOI:10.1002/cplu.201402450

β-Cyclodextrin-linked polyethylenimine nanoparticles facilitate gene transfer and enhance the angiogenic capacity of mesenchymal stem cells for wound repair and regeneration

DNA encoding vascular endothelial growth factor-165 (VEGF-165), Nonviral genetic engineering

Qi, X.; Xu, K.; Zhong, H.; Zhai, H.; Yu, G.; Yuan, Y.; Zhang, Z.; Guan, G.

(2-Hydroxypropyl)-β-cyclodextrin is a new angiogenic molecule for therapeutic angiogenesis

Peripheral artery disease, Vascular endothelial growth factor A, Platelet-derived growth factor BB, Basic fibroblast growth factor, Endothelial nitric oxide synthase, Unilateral hindlimb ischemia model in mice

PloS one, 2015, 10, e0125323; DOI:10.1371/journal.pone.0125323

Raslan, Z.; Naseem, K. M.

Compartmentalisation of cAMP-dependent signalling in blood platelets: The role of lipid rafts and actin polymerisation

Methyl-β-cyclodextrin

Platelets, 2015, 26, 349-357; DOI:10.3109/09537104.2014.916792

Crosslinking of collagen using a controlled molecular weight bio-crosslinker : β-cyclodextrin polyrotaxane multi-aldehydes

N-ethyl-N-(3-dimethylaminopropyl) carbodiimide hydrochloride, Glutaraldehyde, Biodegradation rate, Swelling, Porosity, Tissue engineering scaffold

RSC Advances, 2015, 5, 46088-46094; DOI:10.1039/C5RA07036H

Uptake of Clostridium botulinum C3 exoenzyme into intact HT22 and J774A.1 cells

Inhibition, Methyl-β-cyclodextrin

Toxins, 2015, 7, 380-395; DOI:10.3390/toxins7020380

Cyclodextrin-peptide conjugates for sequence specific DNA binding

α, β and γ-cyclodextrins equipped with azide functionalities

Shanmugam, S.; Saravanabalaji, D.; Yi, M.

Detergent-resistant membrane association of NS2 and E2 during hepatitis C virus replication

Treatment of cells with methyl-β-cyclodextrin

Smith, T. N.; Oppenheimer, S. B.

Involvement of L(-)-rhamnose in sea urchin gastrulation: A live embryo assay

α-Cyclodextrin killed embryos

Zygote, 2015, 23, 222-228; DOI:10.1017/S0967199413000452

Song, H-Q.; Li, R-Q.; Duan, S.; Yu, B.; Zhao, H.; Chen, D-F.; Xu, F-J.

Ligand-functionalized degradable polyplexes formed by cationic poly(aspartic acid)-grafted chitosan-cyclodextrin conjugates

Folic acid, Adamantane, Layer-by-layer assembly, Gene transfection

Nanoscale, 2015, 7, 5803-5814; DOI:10.1039/C4NR07515C

Fate of cerium dioxide nanoparticles in endothelial cells: Exocytosis

Methyl-β-cyclodextrin, Fusion of vesicular membranes with plasma membrane, Discharge of vesicular content to extracellular environment, Cholesterol

Journal of Nanoparticle Research, 2015, 17, 1-14; DOI:10.1007/s11051-015-3007-4

Molecular complex composed of β-cyclodextrin-grafted chitosan and pH-sensitive amphipathic peptide for enhancing cellular cholesterol efflux under acidic pH

Cellular cholesterol efflux enhancing peptide, Treating atherosclerosis, High-affinity binding

Bioconjugate Chemistry, 2015, 26, 572-581; DOI:10.1021/acs.bioconjchem.5b00037

Tamura, A.; Yui, N.

β-Cyclodextrin-threaded biocleavable polyrotaxanes ameliorate impaired autophagic flux in Niemann-Pick type C disease

Cholesterol reduction, Negligible toxic effect, Formation of autolysosomes

Journal of Biological Chemistry, 2015, 290, 9442-9454; DOI:10.1074/jbc.M115.636803
5. CDs in Food, Cosmetics and Agrochemicals

Gurarslan, A.; Shen, J.; Caydamli, Y.; Tonelli, A. E.

Pyriproxyfen cyclodextrin inclusion compounds

Pesticide, Mosquito larvae, β- and γ-cyclodextrin
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 489-496; DOI:10.1007/s10847-015-0526-7

Huang, X.; Xue, D.; Xue, L.

Changes in soil microbial functional diversity and biochemical characteristics of tree peony with amendment of sewage sludge compost
Greenhouse experiment, Carbon source utilization pattern, α-Cyclodextrin
Environmental Science and Pollution Research, 2015, 22, 11617-11625; DOI:10.1007/s11356-015-4407-9

Antioxidant activity of rosemary extracts in solution and embedded in polymeric systems
Polyethylene glycol, β-Cyclodextrin
Chemical Papers, 2015, 69, 872-880; DOI:10.1515/chempap-2015-0024

Development of product formulation for orange juice
β-CD, Stability, Orange arome
Shipin Keji, 2015, 40, 117-121

Liu, F.; Antoniou, J.; Li, Y.; Yi, J.; Yokoyama, W.; Ma, J.; Zhong, F.

Preparation of gelatin films incorporated with tea polyphenol nanoparticles for enhancing controlled-release antioxidant properties
SBE-β-CD, Sunflower oil, Oxidation inhibitory effect, Chitosan nanoparticles
Journal of Agricultural and Food Chemistry, 2015, 63, 3987-3995; DOI:10.1021/acs.jafc.5b00003

Lopedota, A.; Cutrignelli, A.; Laquintana, V.; Franco, M.; Donelli, D.; Ragni, L.; Tongiani, S.; Denora, N.

β-cyclodextrin in personal care formulations: Role on the complexation of malodours causing molecules
Carboxylic acids, Thiols, Steroids, Lactic acid, Isobutyric acid, Isovaleric acid, 3-Hydroxy-3-methyl-hexanoic acid, Components present in the sweat and body secretion, Association constant, H-NMR spectroscopy, pH-potentiometric titration

Nitcheu Ngemakwe, P. H.; Le Roes-Hill, M.; Jideani, V.

Effects of yeast, carboxymethylcellulose, yoghurt, transglutaminase and cyclodextrinase on mixing properties of oat dough
6. CDs for other Industrial Applications

Fu, X-B.; Chen, J.; Song, X-L.; Zhang, Y-M.; Zhu, Y.; Yang, J.; Zhang, C-W.

Biodiesel production using a carbon solid acid catalyst derived from β-cyclodextrin

Hydrothermal carbonization, Sulfonation, Esterification, Transesterification

Journal of the American Oil Chemists' Society, 2015, 92, 495-502; DOI:10.1007/s11746-015-2621-8

Ge, T.; Zou, C.; Zuo, C.

Monitoring the effects of hydroxypropyl-β-cyclodextrin as a biomimic catalyst (phase transfer catalyst) for glycidyl monostearate synthesis

HP-β-CD/epichlorohydrin, HP-β-CD/glycidyl monostearate, Phase transfer catalyst

Industrial & Engineering Chemistry Research, 2015, 54, 1723-1730; DOI:10.1021/ie504486h

Gong, K.; Wang, H.; Ren, X.; Wang, Y.; Chen, J.

β-Cyclodextrin-butane sulfonic acid: An efficient and reusable catalyst for the multicomponent synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions

One-pot synthesis, Multicomponent condensation, Solvent-free conditions, Recyclable catalyst

Green Chemistry, 2015, 17, 3141-3147; DOI:10.1039/C5GC00384A
Han, F.; Fu, A.; Kuai, Y-Q.; Kuai, J-Q.

Preparation of calcium carbonate-cyclodextrin composite materials using CTAB microemulsion template

Interaction of cyclodextrin and calcite

Yingyong Huagong, 2015, 44, 8-11

Ruthenium-containing β-cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds

β-CD polymer crosslinked with citric acid, Nanoparticle, Catalytic “microreactors”

Green Chemistry, 2015, 17, 2444-2454; DOI:10.1039/C5GC00005J

Hodge, M.; Gyanwali, G.; Villines, C.; White, J. L.

Synthesis of amphiphilic polymer networks with guest-host properties

α-CD, β-CD, γ-CD, Ethylene glycol, Polyethylene oxide linkers, Removal of hydrophobic contaminants, Wastewater

Carbohydrate-mediated purification of petrochemicals

Green metal-organic frameworks, γ-CDs, Xylene, Ethyltoluene, Cymene, BTEX, Monte Carlo simulations, Shape selectivity toward aromatic hydrocarbons

Journal of the American Chemical Society, 2015, 137, 5706-5719; DOI:10.1021/ja511878b

Hong, S.; Liu, M.; Zhang, W.; Deng, W.

Organic reactions catalyzed by cyclodextrin and its derivatives

Review, Asymmetric organic synthesis

Youji Huaxue, 2015, 35, 325-336; DOI:10.6023/cjoc201409001

Huang, P-J.; Chang, K-L.; Hsieh, J-F.; Chen, S-T.

Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from aspergillus niger on β-cyclodextrin-Fe₃O₄ nanoparticles and ionic liquid

Magnetic particles, Silanization, Reductive amidation

BioMed research international, 2015, 2015, 409103/1-9; DOI:10.1155/2015/409103

Huang, Y.; Li, C.; Bai, J.; Sun, W.; Wang, J.

Fabrication of Ni nanoparticles loaded on β-cyclodextrin/polymethyl methacrylate composite nanofibers via electrospinning, immersion, and chemical reduction

Catalytic properties, Polymethyl methacrylate, β-CD, Reductive impregnation method

Journal of Macromolecular Science, Part B: Physics, 2015, 54, 231-238; DOI:10.1080/00222348.2014.1002356
Huang, J.; Su, P.; Zhao, B.; Yang, Y

Facile one-pot synthesis of β-cyclodextrin-polymer-modified Fe₃O₄ microspheres for stereoselective absorption of amino acid compounds

Magnetic microspheres, DL-tryptophan enantiomers, Chiral discrimination
Analytical Methods, 2015, 7, 2754-2761; DOI:10.1039/C5AY00013K

Lipid-membrane-incorporated hydrophobic photochromic molecules prepared by the exchange method using cyclodextrins

Azoebenzene, Stilbene, Photoisomerization
Organic & Biomolecular Chemistry, 2015, 13, 6175-6182; DOI:10.1039/C5OB00240K

Cyclodextrin modified microgels as "nanoreactor" for the generation of Au nanoparticles with enhanced catalytic activity

α-CD, Poly(N-vinylcaprolactam), Reduction of aromatic nitro-compounds: 4-nitrophenol and 2,6-dimethyl-4-nitrophenol

Jung, K.; Kim, W.; Park, G. W.; Seo, C.; Chang, H. N.; Kim, Y-C.

Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities

Methanogenic inhibitors, β-Cyclodextrin
Applied Microbiology and Biotechnology, 2015, 99, 3327-3337; DOI:10.1007/s00253-015-6419-2

Kakhki, R. M.

Application of magnetic nanoparticles modified with cyclodextrins as efficient adsorbents in separation systems

Pollution removal, Magnetic adsorption technology, β-Cyclodextrin
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 301-310; DOI:10.1007/s10847-015-0512-0

Kang, D-J.; Im, J-H.; Kang, J-H.; Kim, K. H.

Whole cell bioconversion of vitamin D3 to calcitriol using Pseudonocardia sp. KCTC 1029BP

Optimal bioconversion medium, β-Cyclodextrin
Bioprocess and Biosystems Engineering, 2015, 38, 1281-1290; DOI:10.1007/s00449-015-1368-9

Kannan, S.; Nagaraj, K.; Krishnan, S. M.; Thangamuniyandi, P.; Saktinathan, S.; Pakkiri, V.

A comparative study on electron transfer reaction (ETR) of surfactant cobalt(III) complexes of aliphatic/aromatic ligand in micro heterogeneous media: Thermodynamic approach

β-CD, Hydrophobic effect
RSC Advances, 2015, 5, 48079-48085; DOI:10.1039/C5RA02829A
Katla, R.; Chowrasia, R.; Manjari, P. S.; Domingues, N. L. C.

An efficient aqueous phase synthesis of benzimidazoles/benzothiazoles in the presence of β-cyclodextrin

Aromatic aldehydes, o-Phenylenediamine/2-amino thiophenol

RSC Advances, 2015, 5, 41716-41720; DOI:10.1039/C4RA16222F

Kiss, F. M.; Lundemo, M. T.; Zapp, J.; Woodley, J. M.; Bernhardt, R.

Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst

Fermentation and transformation process, 2-Hydroxypropyl-β-cyclodextrin, Scale-up

Microbial Cell Factories, 2015, 14, 28/1-13; DOI:10.1186/s12934-015-0210-z

The first 2IB,3IA-hetero-difunctionalized β-cyclodextrin derivatives as artificial enzymes

Degrade chemical warfare agents, Soman, Acetylcholinesterase

Chemical Communications (Cambridge, United Kingdom), 2015, 51, 2601-2604; DOI:10.1039/C4CC09189B

Li, H.; Li, F.; Zhang, B.; Zhou, X.; Yu, F.; Sun, L.

Visible light-driven water oxidation promoted by host-guest interaction between photosensitizer and catalyst with a high quantum efficiency

Cyclodextrin-modified ruthenium complex, Phenyl-modified ruthenium complexes, Conversion of solar energy into fuels

Journal of the American Chemical Society, 2015, 137, 4332-4335; DOI:10.1021/jacs.5b01924

Li, Z.; Chen, J.; Yang, J.; Su, Y.; Fan, X.; Wu, Y.; Yu, C.; Wang, Z. L.

β-Cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation

Wastewater, Electrochemical degrade, Phenol

Energy & Environmental Science, 2015, 8, 887-896; DOI:10.1039/C4EE03596H

Li, X.; Zou, C.; Cui, C.

Synthesis and characterization of a novel β-cyclodextrin modified cationic polyacrylamide and its application for enhancing oil recovery

Allyl-β-cyclodextrin, Acrylamide, Salt tolerance, Oilfield

Starch/Staerke, 2015, 67, 673-682; DOI:10.1002/star.201500022

Liu, F-F.; Chi, Y-L.; Yu, Z-Q.; Huang, H.; Jia, D-Y.; Yao, K.

Effect of surfactants on the degradation of β-cypermethrin by Bacillus licheniformis B-1

Tween-80, Brij-35, SDS, SDBS, β-Cyclodextrin

Shipin Keji, 2015, 40, 10-13

Liu, Y.; Zou, C.; Yan, X.; Xiao, R.; Wang, T.; Li, M.

The β-cyclodextrin modified natural chitosan as a green inhibitor for carbon steel in acid solutions
β-Cyclodextrin as an efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in water

Arylaldehyde, Malononitrile, Dimedone

Research on Chemical Intermediates, 2015, In press; DOI:10.1007/s11164-015-2027-0

Divinyl sulfone cross-linked cyclodextrin-based polymeric materials: synthesis and applications as sorbents and encapsulating agents

α-CD, β-CD, Phenolic pollutants (Bisphenol A, β-Naphthol), Bioactive compounds (Progesterone, Curcumin), Freundlich isotherm

Molecules, 2015, 20, 3565-3581; DOI:10.3390/molecules20033565

Electron transfer reaction of ion pairs: 1. Surfactant cobalt(III) complexes by Fe(CN)$_6^{4-}$ in microheterogeneous media

Micelles, β-Cyclodextrin, Liposome vesicles, Ionic liquids, Rate of electron transfer

Zeitschrift fuer Physikalische Chemie (Muenchen, Germany), 2015, 229, 327-349; DOI:10.1515/zpch-2014-0581

Preparation of water-insoluble β-cyclodextrin polymer cross-linked with (waste) glycerin and epichlorohydrin

Bisphenol A, 4-Nonylphenol

Kobunshi Ronbunshu, 2015, 72, 64-70; DOI:10.1295/koron.2014-0032

Anticorrosion hybrid nanocomposite coatings with encapsulated organic corrosion inhibitors

Sol-gel, 2-Mercaptobenzothiazole, 2-Mercaptobenzimidazole, β-Cyclodextrin, Long-term corrosion protection

Journal of Coatings Technology and Research, 2015, 12, 587-593; DOI:10.1007/s11998-015-9657-4

Preparation and application of magnetic bisphenol A imprinted polymers with binary functional monomers

β-Cyclodextrin, 4-Vinylpyridine, Magnetic solid-phase extraction, Magnetic molecularly imprinted polymer

Gaodeng Xuexiao Huaxue Xuebao, 2015, 36, 449-455; DOI:10.7503/cjcu20140764
Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems

Trehalose, Glass transition temperature, Spacer arms of different length
Biotechnology Progress, 2015, 31, 791-798; DOI:10.1002/btpr.2067

Sayyahi, S.; Mozafari, S.; Saghanezhad, S. J.
Fe₃O₄ nanoparticle-bonded β-cyclodextrin as an efficient and magnetically retrievable catalyst for the preparation of β-azido alcohols and β-hydroxy thiocyanate
Ultrasound irradiation
Research on Chemical Intermediates, 2015, In press; DOI:10.1007/s11164-015-2037-y

 Novel high-temperature supercapacitor combined dye sensitized solar cell from a sulfated β-cyclodextrin/PVP/MnCO₃ composite
 Parallel-connected supercapacitor

Shunmugakani, S.; Easwaramoorthy, D.
Mechanistic studies on β-cyclodextrin catalyzed oxidation of glutamine
Peroxomonosulfate
International Journal of ChemTech Research, 2015, 7, 412-419

Sinha, A.; Jana, N. R.
Separation of microcystin-LR by cyclodextrin-functionalized magnetic composite of colloidal graphene and porous silica
γ-Cyclodextrin
ACS Applied Materials & Interfaces, 2015, 7, 9911-9919; DOI:10.1021/acsami.5b02038

Adsorption properties of carboxymethyl-β-cyclodextrin functionalized ferroferric oxide magnetic nanocomposites on rhodamine B
Saturation magnetization, Langmuir adsorption model
Yingyong Huaxue, 2015, 32, 110-117; DOI:10.11944/j.issn.1000-0518.2015.01.140147

7. CDs in Sensing and Analysis

Flor, S.; Rando, M. I.; Contin, M.; Scioscia, S.; Tripodi, V.; Lucangioli, S.
Development and validation of a CD-MEKC system for the simultaneous determination of dihydrostreptomycin sulfate and two benzylpenicillin salts
dihydrostreptomycin benzylpenicillin sodium dodecyl sulfate
Journal of Liquid Chromatography & Related Technologies, 2015, 38, 955-962; DOI:10.1080/10826076.2014.999198
Gade, M.; Paul, A.; Alex, C.; Choudhury, D.; Thulasiram, H. V.; Kikkeri, R.

Supramolecular scaffolds on glass slides as sugar based rewritable sensors for bacteria

β-Cyclodextrin-ferrocene, Adamantane carboxylic acid, Biosensor
Chemical Communications (Cambridge, United Kingdom), 2015, 51, 6346-6349; DOI:10.1039/C5CC01019E

Gong, X.; Xu, X.; Gong, Z.; Li, X.; Jia, C.; Guo, M.; Li, H.

Remediation of PAH-contaminated soil at a gas manufacturing plant by a combined two-phase partition system washing and microbial degradation process

PAH bioavailability, Hydroxypropyl-β-cyclodextrin extraction
Environmental Science and Pollution Research, 2015, 22, 12001-12010; DOI:10.1007/s11356-015-4466-y

Guo, X.; Yang, X.; Liu, P.; Wang, K.; Wang, Q.; Guo, Q.; Huang, J.; Li, W.; Xu, F.; Song, C.

Multiple amplification detection of microRNA based on the host-guest interaction between β-cyclodextrin polymer and pyrene

Biomarkers, Cancer diagnosis, Polymerase-aided strand displacement, Exonuclease-assisted cyclic enzymatic amplification
Analyst (Cambridge, United Kingdom), 2015, 140, 4291-4297; DOI:10.1039/C5AN00626K

Guo, X.; Liu, P.; Yang, X.; Wang, K.; Wang, Q.; Guo, Q.; Huang, J.; Liu, J.; Song, C.; Li, W.

A multiple amplification strategy for nucleic acid detection based on host-guest interaction between the β-cyclodextrin polymer and pyrene

Fluorescence enhancement, DNA, miRNA
Analyst (Cambridge, United Kingdom), 2015, 140, 2016-2022; DOI:10.1039/C4AN02402H

Hancu, G.; Budau, M.; Kantor, L. K.; Carje, A.

Cyclodextrin screening for the chiral separation of amlodipine enantiomers by capillary electrophoresis

Amlodipine, Chiral selectors, α-CD, β-CD, HP-β-CD, RAMEB, CM-β-CD, SBE-β-CD
Advanced pharmaceutical bulletin, 2015, 5, 35-40; DOI:10.5681/apb.2015.005

Hancu, G.; Carje, A.; Iuga, I.; Fulop, I.; Szaboa, Z-I.

Cyclodextrin screening for the chiral separation of carvedilol by capillary electrophoresis

Chiral selectors, β-CD, hydroxypropyl-β-CD, randomly methylated β-CD, sulfobutyl ether-β-CD
Iranian Journal of Pharmaceutical Research, 2015, 14, 425-433

Hussein, L. A.; El-Kosasy, A. M.; Trabik, Y. A.

Comparative study of normal, micro- & nano-sized iron oxide effect in potentiometric determination of fluconazole in biological fluids

Di-octyl phthalate as a plasticizer, 2-Hydroxypropyl-β-cyclodextrin as an ionophore
RSC Advances, 2015, 5, 37957-37963; DOI:10.1039/C5RA05245A
Karim, Z.; Khan, M. J.; Maskat, M. Y.; Adnan, R.

Immobilization of horseradish peroxidase on β-cyclodextrin capped silver nanoparticles: Its future aspects in biosensor application

Glutaraldehyde crosslinking, Single cell gel electrophoresis, Genotoxicity, Comparative stability study

Preparative biochemistry & biotechnology, 2015, In press; DOI:10.1080/10826068.2015.1031389

Kaur, A.; Gupta, U.

Preconcentration of alizarin dye using beta-cyclodextrin epichlorohydrin polymer as a solid phase extractant

UV-Vis spectrophotometer

World Journal of Pharmaceutical Research, 2015, 4, 399-405

Design of molecule-responsive organic-inorganic hybrid nanoparticles bearing cyclodextrin as ligands

Bisphenol A, Acrylamide, Acryloyl-modified β-cyclodextrin, N,N'-methylenebisacrylamide, Shrinkage, Dynamic crosslinks

Polymer Journal (Tokyo, Japan), 2015, 47, 206-211; DOI:10.1038/pj.2014.122

Linke, A.; Schmidt, M.; Waldvogel, S. R.

Poly(2-vinylpyridine)-based polymers as an efficient affinity material for the detection of airborne phenol

Simple cyclodextrin derivative, Quartz microbalance-based tracing

Liu, S-Y.; Wang, H.; He, T.; Qi, L.; Zhang, Z-Q.

Sensitive fluorimetric assays for α-glucosidase activity and inhibitor screening based on β-cyclodextrin-coated quantum dots

p-Nitrophenol, Fluorescence analysis

Luminescence, 2015, In press; DOI:10.1002/bio.2929

Liu, F.; Zhang, S.; Wang, G.; Zhao, J.; Guo, Z.

A novel bifunctional molecularly imprinted polymer for determination of Congo red in food

β-Cyclodextrin-maleic anhydride, N,N-methylenebisacrylamide, Solid-phase extraction, Pork, Beef, Jelly, Hawthorn

RSC Advances, 2015, 5, 22811-22817; DOI:10.1039/C4RA14719G

Lourenco, L. P.; Aguilar, F. A.; De Oliveira, A. R. M.; De Gaitani, C. M.

Quantitative determination of lercanidipine enantiomers in commercial formulations by capillary electrophoresis

2,3,6-O-methyl-β-cyclodextrin, Background electrolyte

Journal of Analytical Methods in Chemistry, 2015, 294270; DOI:10.1155/2015/294270
Lu, Y.; Wang, H.; Wang, G.; Wang, Y.; Gu, X.; Yan, C.

Preparation of 1 μm non-porous C18 silica gel stationary phase for chiral-pressurized capillary electrochromatography

Carboxymethyl-β-cyclodextrin, Chiral additive, Bupropion, Clenbuterol, Metoprolol, Esmolol

Sepu, 2015, 33, 209-214; DOI:10.3724/SP.J.1123.2014.11030

Ou, W.; Li, Y.; Shi, D.; Qu, F.

Determination of gambogic acid in gamboge by non-aqueous capillary electrophoresis

β-Cyclodextrin as running buffer

Sepu, 2015, 33, 152-157; DOI:10.3724/SP.J.1123.2014.11006

Pedehontaa-Hiaa, G.; Guerrouache, M.; Carbonnier, B.; Le Derf, F.; Morin, C. J.

Layer-by-layer assemblies based on a cationic β-cyclodextrin polymer: Chiral stationary phases for open-tubular electrochromatography

Polymer of trimethylammonium-β-CD as a chiral selector, Polyethyleneimine, Poly(diallyldimethyl ammonium chloride), Poly(sodium 4-styrenesulfonate), Polycarboxymethyl-β-CD, Chondroitin sulfate

Chromatographia, 2015, 78, 533-541; DOI:10.1007/s10337-015-2851-9

Rezanka, M.; Langton, M. J.; Beer, P. D.

Anion recognition in water by a rotaxane containing a secondary rim functionalized cyclodextrin stoppered axle

Halide anions, Sulfate

Chemical Communications (Cambridge, United Kingdom), 2015, 51, 4499-4502; DOI:10.1039/C5CC00171D

Ruiz-Palomero, C.; Soriano, M. L.; Valcarcel, M.

β-Cyclodextrin decorated nanocellulose: A smart approach towards the selective fluorimetric determination of danofloxacin in milk samples

Solid Phase Microextraction, Amidation reaction

 Analyst (Cambridge, United Kingdom), 2015, 140, 3431-3438; DOI:10.1039/C4AN01967A

Sayed, M.; Pal, H.

pH-Assisted control over the binding and relocation of an acridine guest between a macrocyclic nanocarrier and natural DNA

HP-β-CD, pH-sensitive supramolecular assembly, Bioavailability, Sensors

Physical Chemistry Chemical Physics, 2015, 17, 9519-9532; DOI:10.1039/C4CP05335D

Sharma, P.; Ghosh, A.; Tudu, B.; Bhuyan Lakshi, P.; Tamuly, P.; Bhattacharyya, N.; Bandyopadhyay, R.; Das, U.

A quartz crystal microbalance sensor for detection of geraniol in black tea

β-CD, Linalool, Linalool oxide, Me salicylate, Trans-2-hexanal

IEEE Sensors Journal, 2015, 15, 1178-1185; DOI:10.1109/JSEN.2014.2359741

Shen, W-J.; Zhuo, Y.; Chai, Y-Q.; Yang, Z-H.; Han, J.; Yuan, R.

Enzyme-free electrochemical immunosensor based on host-guest nanonets catalyzing amplification for procalcitonin detection
Stefan-van Staden, R.-I.; Moldoveanu, I.; Stanciu Gavan, C.

Pattern recognition of HER-1 in biological fluids using stochastic sensing

Maltodextrin, 5,10,15,20-Tetraphenyl-21H,23H-porphyrin, α-Cyclodextrin, Diamond paste

Su, Y.; Mu, X.; Qi, L.

Development of a capillary electrophoresis system with Mn(II) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors

L-Alanine, Ionic liquids, Screening tyrosinase inhibitors with benzoic acid

RSC Advances, 2015, 5, 28762-28768; DOI:10.1039/C5RA02744F

Surikumaran, H.; Mohamad, S.; Sarih, N. M.

Synthesis and evaluation of methacrylic acid functionalized β-cyclodextrin based molecular imprinted polymer for 2,4-dichlorophenol in water samples

Radical polymerization, Trimethylolpropane trimethacrylate as a cross-linker, Methacrylic acid functionalized β-cyclodextrin, Real water samples for the analysis of phenols

Desalination and Water Treatment, 2015, In press; DOI:10.1080/19443994.2015.1012333

Tan, L.; Wang, G.; Chen, N.; Zhang, J.; Feng, H.

Layer-by-layer assembled multilayers of graphene/mono-(6-amino-6-deoxy)-β-cyclodextrin for detection of dopamine

Glassy carbon electrode, High surface area

Chinese Journal of Chemistry, 2015, 33, 185-191; DOI:10.1002/cjoc.201400726