Enhanced Bioavailability of Curcumins

Curcumionoids (curcumin and related compounds, such as desmethylcurcumin and bis-desmethylcurcumin) are the main components of rhizomes of turmeric (*Curcuma longa*) used as spice and as yellow colorant mainly in South Asia. In addition to the food application, the beneficial effects on health have been traditionally utilized in India. The mechanism of the antioxidant, antibacterial, antifungal, anticancer and antiinflammatory effects of curcumin have been explored and recently also the benefits in cystic fibrosis and Alzheimer disease have been proved in cellular and animal models [1].

Curcumin is an oil-soluble polyphenol pigment, practically insoluble in water at acidic and neutral pH, soluble in alkali. It has low bioavailability owing to the poor aqueous solubility. It was obvious to try cyclodextrins (CDs) for enhancing the solubility as the two phenyl moieties might fit well into the CD cavity (Figure 1). For βCD a stoichiometry of 2:1 (host:guest) was established with an association constant of 5.53 x 10⁵ mol⁻² L² [2]. Later studies suggested 1:1 stoichiometry with most of the CDs.

Aggregation of curcumin/βCD complex resulting in spherical nanoparticles of approx. 500 nm was illustrated by transmission electron microscopic (TEM) images by Yallapu et al. [3]. This aggregation helps the cell penetration.

The phase solubility studies showed that all the three natural CDs enhance the solubility of curcumin with αCD giving the highest solubility (Figure 2) [4].
According to Szente et al., RAMEB enhanced the solubility of curcuma oleoresin (curcuminoids obtained by extraction of turmeric with ethanol) by 3 orders of magnitude (Figure 3) [5]. On the other hand, solubility and phase-distribution studies showed that curcuminoids with side groups on the phenyl moiety have higher affinity for the HPGCD than for the βCDs and that the relative affinity of the larger HPGCD cavity increases with the curcuminoid molecular size [6]. Curcumin was found to have a more than 30-fold higher association constant with HPGCD compared to HPBCD in buffer containing 0.5% ethanol [6].

Complexation with βCD protects from decomposition upon UV-exposure: curcumin itself is fast decomposed while approx. 80% of residual curcumin content of the βCD complex was measured after 14 years of UV exposure [5]. CDs protect against hydrolytic decomposition in
the order of HPBCD > MeBCD ≻ HPGCD [7].

The enhanced solubility results in enhanced bioavailability and improved clinical effects. Some results are listed in Table 1.

Table 1. Effects of CD-complexation on the biological activity of curcumin

<table>
<thead>
<tr>
<th>Effect</th>
<th>CD</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced relative bioavailability (plasma level) after oral administration</td>
<td>α-, β- and γCDs</td>
<td>[4]</td>
</tr>
<tr>
<td>Enhanced bioavailability and controlled release against stomach cancer</td>
<td>βCD</td>
<td>[8]</td>
</tr>
<tr>
<td>Improved bioavailability in prostate cancer cell line</td>
<td>βCD</td>
<td>[3]</td>
</tr>
<tr>
<td>Enhanced oral bioavailability compared to commercial formulations</td>
<td>γCD</td>
<td>[9]</td>
</tr>
<tr>
<td>Improved antimicrobial effect in photodynamic therapy of superficial infections</td>
<td>HPBCD, HPGCD</td>
<td>[10, 11]</td>
</tr>
<tr>
<td>Higher efficacy against inflammatory bowel disease (IBD) in colitis-induced rat model</td>
<td>HPBCD</td>
<td>[12]</td>
</tr>
<tr>
<td>Enhanced cellular uptake and effect against cell proliferation and angiogenesis</td>
<td>HPGCD</td>
<td>[13]</td>
</tr>
<tr>
<td>Enhanced apoptopic effect in human lung and ovarian carcinoma cells</td>
<td>CD polymer</td>
<td>[14]</td>
</tr>
</tbody>
</table>

Most recently curcumin/CD complexes formulated in liposomes, magnetic nanoparticles, nanospdognes, nanosuspensions, hydrogels etc. have been also studied.

Some of the research results have been translated to the market: the highly bioavailable curcumin/Cawamax W8 (γCD) formulation for application as food supplement is on the product list of Wacker Chemie [9].

References

Eva Fenyvesi

CycloLab Cyclodextrin R&D Laboratory, Ltd.,
Budapest, HUNGARY
1. CDs: Derivatives, Production, Enzymes, Toxicity

Conformational changes of 1-4-glucopyranosyl residues of a sulfated C-C linked hexasaccharide

1C4 Chair Conformation, Maltotriose, Molecular Mechanics, NOESY Spectroscopy, Sulfated C-C Oligosaccharides, Sulfated Oligosaccharide-Based Drugs

Carbohydrate Research, 2014, In Press; DOI:10.1016/j.carres.2014.02.009

Similarities and differences in the biochemical and enzymological properties of the four isomaltases from Saccharomyces cerevisiae

Isomaltase, Isomaltose, Maltose, Proline substitution, Substrate ambiguity, Substrate inhibition, Thermostability, Yeast, α-Glucosidase

FEBS Open Bio, 2014, 4, 200–212; DOI:10.1016/j.fob.2014.02.004

New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase

Bioisoster, C-Glucopyranosyl Derivative, Glycogen Phosphorylase, Inhibitor

Li, Z.; Chen, S.; Gu, Z.; Chen, J.; Wu, J.

Alpha-cyclodextrin: enzymatic production and food applications

Soluble Dietary Fiber

Morris, M. J.; Striegel, A. M.

Determining the solution conformational entropy of oligosaccharides by SEC with on-line viscometry detection

Oligosaccharides, Size-Exclusion Chromatography, Solution Conformational Entropy

Carbohydrate Polymers, 2014, 106, 230–237; DOI:10.1016/j.carbpol.2014.02.027

Application of different feeding strategies in fed batch culture for pullulanase production using sago starch

Fed Batch, Maltose, Maltotriose, Panose, Pullulanase, Sago

Carbohydrate Polymers, 2014, 102, 962-969; DOI:10.1016/j.carbpol.2013.10.031
Tamamura, N.; Saburi, W.; Mukai, A.; Morimoto, N.; Takehana, T.; Koike, S.; Matsui, H.; Mori, H.

Enhancement of hydrolytic activity of thermophilic alkalophilic α-amylase from bacillus sp. AAH-31 through optimization of amino acid residues surrounding the substrate binding site

Enzyme Activity, Enzyme Production, Glycoside Hydrolase Family 13, Mutagenesis, Starch

Biochemical Engineering Journal, 2014, 86, 8-15; DOI:10.1016/j.bej.2014.02.014

Wu, S-J.; Chen, J.

Preparation of maltotriose from fermentation broth by hydrolysis of pullulan using pullulanase

Maltotriose, Pullulan, Pullulanase

Carbohydrate Polymers, 2014, 107, 94–97; DOI:10.1016/j.carbpol.2014.02.050

2. CD complexes: Preparation, Properties in solution and in solid phase, Specific guest

Chapter 15 - Molecular modeling study of neutral and cationic species of ortho-anisidine by β-cyclodextrin

Deformation Energy, GIAO, Inclusion Complex, NBO, PM6, Calculated Deformation Energies, Donor And Acceptor Interactions

Advances in Quantum Chemistry, 2014, 68, 279-291 (Proceedings of MEST 2012: Electronic structure methods with applications to experimental chemistry); DOI:10.1016/B978-0-12-800536-1.00015-0

Sarkar, A.; Kedia, N.; Bagchi, S.

A novel water soluble solvatochromic probe as a micropolarity reporter for homogeneous and microheterogeneous media

Homomicelle, Microenvironment, Micropolarity, Preferential Salvation, β-cyclodextrin Nanocavity

Stalin, T.; Srinivasan, K.; Sivakumar, K.; Radhakrishnan, S.

Preparation and characterizations of solid/aqueous phases inclusion complex of 2, 4-dinitroaniline with β-cyclodextrin

2D ROESY NMR, Inclusion Complex, Patch Dock Server, Molecular Docking Studies

Carbohydrate Polymers, 2014, 107, 72–84; DOI:10.1016/j.carbpol.2014.01.091

Stefaniu, C.; Brezesinski, G.; Möhwald, H.

Langmuir monolayers as models to study processes at membrane surfaces

Bilayers, DNA, GIXD, Interfacial Reactions, IRRAS, Lipids, Nanoparticles, Peptides

Drug solubilization mechanism of α-glucosyl stevia by NMR spectroscopy

Aggregation Number, Drug Solubility Improvement, Nuclear Overhauser Effect Spectroscopy, α-Glucosyl Stevia, Micellar Drug Inclusion Capacity

3. CDs in Drug Formulation

Chee, P. L.; Prasad, A.; Fang, X.; Owh, C.; Yeo, V. J. J.; Loh, X. J.

Supramolecular cyclodextrin pseudorotaxane hydrogels: a candidate for sustained release?

Biomaterials, Drug Release, Hydrogel, Kinetics, PEO, PEO-α-CD, BSA, Lysozyme, Protein Release

Materials Science and Engineering: C, 2014, 6–12; DOI:10.1016/j.msec.2014.02.026, 39

Colligris, B.; Alkozi, H. A.; Pintor, J.

Recent developments on dry eye disease treatment compounds

Anti-Inflammatory, Dry Eye, Keratitis Sicca, Keratoconjunctivitis Sicca, Mucin Secretion, NSAID, Tear Secretion, Xerophthalmia

Doktorovova, S.; Souto, E. B.; Silva, A. M.

Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – A systematic review of in vitro data

Cytotoxicity, In vitro Studies, Lipid Nanoparticles, Solid Lipid Nanoparticles

Dragan, E. S.

Design and applications of interpenetrating polymer network hydrogels. a review

Dyes, Heavy Metals, Hydrogels, Interpenetrating Polymer Network, Sorption, Hydrogels Based on Polysaccharides

Enter, D.; Spinhoven, P.; Roelofs, K.

Alleviating social avoidance: effects of single dose testosterone administration on approach-avoidance action

Angry Facial Expressions, Approach-Avoidance Task, Social Action, Social Approach Motivation, Testosterone Administration, Threat Avoidance
Etherson, K.; Halbert, G.; Elliott, M.

Determination of excipient based solubility increases using the CheqSol method

CheqSol, (2-Hydroxy)propyl-β-cyclodextrin, Monoprotic Acids and Bases, Poloxamers, Solubility, Ibuprofen, Gliclazide, Atenolol and Propranolol

Fonseca, N. A.; Gregório, A. C.; Valério-Fernandes, Â.; Simões, S.; Moreira, J. N.

Bridging cancer biology and the patient needs with nanotechnology-based approaches

PEGylated Liposomes, Polymeric Nanoparticles, Tumor Microenvironment

Gu, B.; Burgess, D. J.

Chapter 20 - Polymeric materials in drug delivery

Biocompatibility, Controlled Drug Delivery, In vitro Dissolution, Mechanical Properties, Morphology, Surface Analysis

Natural and Synthetic Biomedical Polymers, 2014, 333-349; DOI:10.1016/B978-0-12-396983-5.00021-1

Han, B.; Yang, B.; Yang, X.; Zhao, Y.; Liao, X.; Gao, C.; Wang, F.; Jiang, R.

Host–guest inclusion system of norathyriol with β-cyclodextrin and its derivatives: preparation, characterization, and anticancer activity

Anticancer Activity, Binding Ability, Characterization, Inclusion Complex, Norathyriol

Avaliação in vitro das características antimicrobianas de sugamadex

E. Coli, E. Fecalis, Efeito Antimicrobiano, P. Aeruginosa, S. Aureus, Sugamadex

Huang, Y.; Dai, W-G.

Fundamental aspects of solid dispersion technology for poorly soluble drugs

Drug–Polymer Interaction, Phase Separation, Poorly Soluble Drug, Solid Dispersion

Ivanova, E. P.; Bazaka, K.; Crawford, R. J.

Chapter 2 - Natural polymer biomaterials: advanced applications

Biodegradable Materials, Drug delivery, Natural Polymers, Tissue Engineering Matrices

Kemper, M. F.; Stirone, C.; Krause, D. N.; Duckles, S. P.; Procaccio, V.
Genomic and non-genomic regulation of PGC1 isoforms by estrogen to increase cerebral vascular mitochondrial biogenesis and reactive oxygen species protection
Cerebral Blood Vessels, Estrogen, Glutamate-Cysteine Ligase, Glutathione, Mitochondria, Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1

Intermolecular complexation of low-molecular-weight succinoglycans directs solubility enhancement of pindolol
Low-Molecular-Weight Succinoglycans, Pindolol, Sinorhizobium Meliloti, Solubility Enhancement, Beta-Blocker, Methyl-β-cyclodextrin, RAMEB

Kleteckova, L.; Tsenov, G.; Kubova, H.; Stuchlik, A.; Vales, K.
Neuroprotective effect of the 3α5β-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats
3α5β-Pregnanolone Glutamate, Endothelin-1, Focal Cerebral Ischemia, Immature Rats, NMDA Receptors

Neuroscience Letters, 2014, 564, 11-15; DOI:10.1016/j.neulet.2014.01.057

Kortejärvi, H.; Malkki, J.; Shawahna, R.; Scherrmann, J.- M.; Urtti, A.; Yliperttula, M.
Pharmacokinetic simulations to explore dissolution criteria of BCS I and III biowaivers with and without MDR-1 efflux transporter
BCS, Bioequivalence, Biowaiver, Compartmental Absorption and Transit Model, Drug Dissolution, Permeability, Pharmacokinetic Simulation, Two-Compartment Model

Kumar, N.; Kumar, R.
Chapter 6 - Human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS)
Gene Therapy, Immunotherapy, Microbicides, Nanodrug Delivery Carriers, Nanovaccines, Cyclodextrin Polymer-Based Nanoparticles

Larrañeta, E.; Isasi, J. R.
Non-covalent hydrogels of cyclodextrins and poloxamines for the controlled release of proteins
Host–Guest Interactions, Self-Assembly, Poly(Ethylene Oxide)/Poly(Propylene Oxide) (PEO/PPO) Octablock Star Copolymers, Bovine Serum Albumin

Carbohydrate Polymers, 2014, 102, 674-681; DOI:10.1016/j.carbpol.2013.11.002

A novel oral delivery system consisting in “drug-in cyclodextrin-in nanostructured lipid carriers” for poorly water-soluble drug: vinpocetine

Nanostructured Lipid Carriers (NLC), Oral Bioavailability, Poorly Water-Soluble Drugs, Vinpocetine–Cyclodextrin–Tartaric Acid Complexes

Liu, S.; Chen, X.; Zhang, Q.; Wu, W.; Xin, J.; Li, J.

Multifunctional hydrogels based on β-cyclodextrin with both biomineralization and anti-inflammatory properties

Carbohydrate Polymers, 2014, 102, 869-876; DOI:10.1016/j.carbpol.2013.10.076

Mogoșanu, G. Dan; G., Alexandru M.

Natural and synthetic polymers for wounds and burns dressing

Extracellular Matrix, Polymers, Regenerative Medicine, Wounds

Parisi, O. I.; Puoci, F.; Restuccia, D.; Farina, G.; Iemma, F.; Picci, N.

Chapter 4 - polyphenols and their formulations: different strategies to overcome the drawbacks associated with their poor stability and bioavailability

Bioavailability, Encapsulation, Polyphenols, Stability, Water Solubility

Pein, M.; Preis, M.; Eckert, C.; Kiene, F. E.

Taste-masking assessment of solid oral dosage forms—a critical review

Electronic Taste Sensing System, Human Taste Panel, Sample Pretreatment, Standardized Protocols, UV Spectroscopy

Enhanced chemoprophylactic and clinical efficacy of albendazole formulated as solid dispersions in experimental cystic echinococcosis

Albendazole, Cystic Echinococcosis, Echinococcus Granulosus, Solid Dispersions

Veterinary Parasitology, 2014, In Press; DOI:10.1016/j.vetpar.2014.01.027

Peponi, L.; Navarro-Baena, I.; Kenny, J.M.

Chapter 7 - Shape memory polymers: properties, synthesis and applications

Biomedical Applications, External Stimuli Activation, Shape Memory Materials

Smart Polymers and their Applications, 2014, 204-236; DOI:10.1533/9780857097026.1.204, Woodhead Publishing
Rajendiran, N.; Sankaranarayanan, R.K.; Saravanan, J.

Nanostructures formed by cyclodextrin covered aminobenzophenones through supramolecular self assembly

Aminobenzophenone, Cyclodextrin, Molecular Modeling, Nanostructures, Self Assembly, Solvent Effects

Reis, L.; Chiu, L.L.Y.; Feric, N.; Fu, L.; Radisic, M.

Chapter 3 - Injectable biomaterials for cardiac regeneration and repair

Design Criteria, Hydrogel, Myocardial Infarction, Natural and Synthetic Polymers

Cardiac Regeneration and Repair Biomaterials and Tissue Engineering, 2014, 49-81; DOI:10.1533/9780857097026.1.49, Woodhead Publishing

Reyes-Ortega, F.

Chapter 3 - pH-Responsive polymers: properties, synthesis and applications

Control Radical Polymerization, Drug and Gene Delivery, Hydrogels and Nanoparticles Carriers, pH-Responsive Polymer

Samal, S.K.; Dash, M.; Dubruel, P.; Van Vlierberghe, S.

Chapter 8 - Smart polymer hydrogels: properties, synthesis and applications

Drug delivery, Polymers, Smart Hydrogels, Stimuli-Responsive, Tissue Engineering

Nanocrystal-based per-oral itraconazole delivery: superior in vitro dissolution enhancement versus Sporanox® is not realized in in vivo drug absorption

Bioavailability, Dissolution, In vivo Studies, Nanocrystal Suspension, Poorly Water Soluble Drugs, Solid Oral Nanocrystal Formulation, Wet Milling

Servant, A.; Bianco, A.; Prato, M.; Kostarelos, K.

Graphene for multi-functional synthetic biology: the last ‘zeitgeist’ in nanomedicine

Carbon, Drug delivery, Nanomaterials, Nanotechnology

Improved cognitive outcome after progesterone administration is associated with protecting hippocampal neurons from secondary damage studied in vitro and in vivo

Cognitive Function, Hippocampal Neuron, Progesterone, Traumatic Brain Injury

Behavioural Brain Research, 2014, 264, 135-142; DOI:10.1016/j.bbr.2014.01.049
Skorupska, E.; Jeziorna, A.; Kazmierski, S.; Potrzebowski, M. J.

Recent progress in solid-state NMR studies of drugs confined within drug delivery systems

Antibiotics, Anticancer Drugs, Drug Delivery Systems, Non-Steroidal Anti-Inflammatory Drugs, Solid-State NMR

Influence of NPC1 genotype on the toxicity of hydroxypropyl-β-cyclodextrin, a potentially therapeutic agent, in Niemann–Pick Type C disease models

Autosomal Recessive Disorder, (2-Hydroxy)propyl-β-cyclodextrin, Lysosomal Storage Disease, Niemann–Pick type C, NPC1-Deficient Mice, U18666A, Hepatocellular Necrosis, Renal Tubular Damage, Hemorrhages in Lungs, Resistance to the Lethality

Molecular Genetics and Metabolism Reports, 2014, 1, 19-30; DOI:10.1016/j.ymgmr.2013.12.003

Vu, T.D.; Kofidis, T.

Chapter 6 - Biomaterials and cells for cardiac tissue engineering

Biomaterials, Cardiac Tissue Engineering, Cells, Myocardial Infarction, Scaffolds

Wang, J.J.; Christman, K.L.

Chapter 2 - Hydrogels for cardiac repair

Cell Delivery, Injectable Hydrogels, Post-Myocardial Infarction Regeneration

Worek, F.; Seeger, T.; Zengerle, M.; Kubik, S.; Thiermann, H.; Wille, T.

Effectiveness of a substituted β-cyclodextrin to prevent cyclosarin toxicity in vivo

Detoxification, Nerve Agents, Protection, Small Molecule Scavenger, Pyridinium Oximate

Toxicology Letters, 2014, 226, 222–227; DOI:10.1016/j.toxlet.2014.02.010

Xiong, M-H.; Bao, Y.; Yang, X-Z.; Zhu, Y-H.; Wang, J.

Delivery of antibiotics with polymeric particles

Antibiotic, Bacterial Infection, Drug Resistance, Polymeric Particle

Xu, E-Y.; Guo, J.; Xu, Y.; Li, H-Y; Seville, P. C.

Influence of excipients on spray-dried powders for inhalation

Aerosolisation, Pulmonary Delivery, Saccharides, Sustained Release, β-Cyclodextrin-, Starch-, and Sodium Carboxymethylcellulose

Yuan, B.; Xu, P-Y.; Zhang, Y-J.; Wang, P-P.; Yu, H.; Jiang, J-H.

Synthesis of biocontrol macromolecules by derivative of chitosan with surfactin and antifungal evaluation

Anti-Sapstain Fungi, Biological Macromolecules, Synthesis, β-Cyclodextrin, Immobilization

4. CDs in Cell Biology

Castro, B. M.; Prieto, M.; Silva, L. C.

Ceramide: a simple sphingolipid with unique biophysical properties

Ceramide-Gel Domains, Lipid Rafts, Membrane Lipid Domains, Morphological Alterations, N-Acyl Chain Ceramides, Sphingomyelinase

Progress in Lipid Research, 2014, 54, 53-67; DOI:10.1016/j.plipres.2014.01.004

Growth inhibition by pennogenyl saponins from rhizoma paridis on hepatoma xenografts in nude mice

Anticancer Activity, Hepatocellular Carcinoma, Nude Mice, Pennogenyl Saponins, Rhizoma Paridis Axialis

Steroids, 2014, 83, 39-44; DOI:10.1016/j.steroids.2014.01.014

Favretto, M. E.; Wallbrecher, R.; Schmidt, S.; Van de Putte, R.; Brock, Rdlon

Glycosaminoglycans in the cellular uptake of drug delivery vectors — bystanders or active players?

Cell-Penetrating Peptides, Drug Delivery, Endocytosis, Glycocalyx, Syndecan, Virus

Hoffman, N. J.; Penque, B. A.; Habegger, K. M.; Sealls, W.; Tackett, L.; Elmendorf, J. S.

Chromium enhances insulin responsiveness via AMPK

AMP-Activated Protein Kinase, Cholesterol, Chromium, GLUT4, Insulin

The Journal of Nutritional Biochemistry, 2014, In Press; DOI:10.1016/j.jnutbio.2014.01.007

Jiang, Z; Redfern, R. E.; Isler, Y.; Ross, A. H.; Gericke, A.

Cholesterol stabilizes fluid phosphoinositide domains

Cholesterol, Domain Formation, Lipid Phase Behavior, Phosphatidylinositol, Phosphatidylinositol-4,5-bisphosphate, Phosphoinositide

Chemistry and Physics of Lipids, 2014, In Press; DOI:10.1016/j.chemphyslip.2014.02.003
Klein, A. S.; Tannert, A.; Schaefer, M.

Cholesterol sensitises the transient receptor potential channel TRPV3 to lower temperatures and activator concentrations

Camphor, *Carvacrol*, *Heat-Activated Ionic Currents*, *Intracellular Calcium Homeostasis*, *Keratinocyte Differentiation*, *Non-Selective Cation Channel*, *Thymol*, *Vanilloid Receptors*, *Cholesterol Supplementation*

Liu, X.; Wang, G.; You, Z.; Qian, P.; Chen, H.; Dou, Y.; Wei, Z.; Chen, Y.; Mao, C.; Zhang, J.

Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a MTOR siRNA-loaded cyclodextrin nanovector

Gene Delivery, *Nanovector*, *pH-Sensitive*, *siRNA Therapy*, *Smooth Muscle Cell*, *Polyethylenimine*, *Ac-αCD, poly(Lactic-co-Glycolic Acid)*, *Apoptosis*

Biomaterials, 2014, 35, 4401–4416; DOI:10.1016/j.biomaterials.2014.02.009

Maggo, S.; Ashton, J. C.

Effects of HMG-CoA reductase inhibitors on learning and memory in the guinea pig

Hippocampus, *Long-Term Potentiation*, *Morris Water Maze*, *Statin*, *Behavioral Changes*

Moullé, V-S.; Picard, A.; Le Foll, C.; Levin, B-E.; Magnan, C.

Lipid sensing in the brain and regulation of energy balance

Energy Balance, *FAT/CD36*, *Hypothalamus*, *Potassium Channel*

Diabetes & Metabolism, 2014, 40, 29-33; DOI:10.1016/j.diabet.2013.10.001

Murphy, C.; English, A.M.; Holden, S.; Fair, S.

Cholesterol-loaded-cyclodextrins improve the post-thaw quality of stallion sperm

Equine, *Membrane Fluidity*, *Reactive Oxygen Species*, *Sperm*, *Viability*

Okada, Y.; Nishikawa, J-i.; Semma, M.; Ichikawa, A.

Role of lipid raft components and actin cytoskeleton in fibronectin-binding, surface expression, and de novo synthesis of integrin subunits in PGE2- or 8-BR-CAMP-stimulated mastocytoma p-815 cells

Cell Adhesion, *Fibronectin*, *Integrin*, *Lipid Raft Components*, *Prostaglandin E2*, *Cholesterol Inhibitor 6-O-α-Maltosyl-β cyclodextrin*

Biochemical Pharmacology, 2014, 88, 364–371; DOI:10.1016/j.bcp.2014.01.039

Prendergast, C.; Quayle, J.; Burdyga, T.; Wray, S.

Atherosclerosis affects calcium signalling in endothelial cells from apolipoprotein e knockout mice before plaque formation

Apolipoprotein-E Knockout Mice, *Calcium Signalling*, *Endothelium*, *Hypercholesterolemia*, *Methyl-β-cyclodextrin*, *RAMEB*

Russo, V.; Young, S.; Hamilton, A.; Amsden, B. G.; Flynn, L. E.

Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury

Angiogenesis, Cardiac Tissue Engineering, Cell Encapsulation, Injectable Biomaterials, Mesenchymal Stem Cell

Biomaterials, 2014, 35, 3956–3974; DOI:10.1016/j.biomaterials.2014.01.075

Song, X.; Liu, B-C.; Lu, X-Y.; Yang, L-L.; Zhai, Y-J.; Eaton, A. F.; Thai, T. L.; Eaton, D. C.; Ma, H-P.; Shen, B-Z

Lovastatin inhibits human b lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression

Anti-Cancer Drugs, Cell Cycle, Confocal Microscopy, Intracellular Calcium, Membrane Cholesterol, Oxidative Stress

Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2014, 1843, 894-901; DOI:10.1016/j.bbamcr.2014.02.002

Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides

Cold Storage and Transport, Epididymides, In Vitro Fertilization, Motility, Sperm, Sphingosine-1-Phosphate

Cryobiology, 2014, 68, 12-17; DOI:10.1016/j.cryobiol.2013.10.007

Tan, C-C.; Yu, J-T.; Tan, M-S.; Jiang, T.; Zhu, Xi-C.; Tan, L.

Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy

Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, Autophagy, Huntington’s Disease, Lysosomal Storage Disorders, Parkinson’s Disease

Wang, H.; Perry, J. W.; Lauring, A. S.; Neddermann, P.; De Francesco, R.; Tai, A. W.

Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for hcv replication membrane integrity and cholesterol trafficking

Lipid Kinase, Lipid Transfer Proteins, Phosphatidylinositol 4-Phosphate, Viral Replication

Zhao, S.; Liao, H.; Ao, M.; Wu, L.; Zhang, X.; Chen, Y.

Fixation-induced cell blebbing on spread cells inversely correlates with phosphatidylinositol 4,5-bisphosphate level in the plasma membrane

Cell Blebbing, Cell Fixation, Human Umbilical Vein Endothelial Cells (HUVECs), Lipid Rafts, Phosphatidylinositol 4,5-Bisphosphate (PIP2), THP-1-Derived Macrophages

FEBS Open Bio, 2014, 4, 190–199; DOI:10.1016/j.fob.2014.02.003
5. CDs in Food, Cosmetics and Agrochemicals

Corrales, M.; Fernández, A.; Han, J. H.
Chapter 7 - Antimicrobial packaging systems
Antimicrobials, Commercialization, Legislation, Physico-Chemical Properties
Innovations in Food Packaging (Second Edition), 2014, 133-170; DOI:10.1016/B978-0-12-394601-0.00007-2, Academic Press

Fabra, M. J.; López-Rubio, A.; Lagaron, J. M.
Chapter 15 - Biopolymers for food packaging applications
Biopolymers, Encapsulation, Food Coatings, Food Packaging, Nanotechnology

Hempfling, K.; Engel, K-H.
Chapter 22 - Analysis and sensory evaluation of gooseberry (Ribes uva crispa L.) volatiles
Aroma, GC-O, Gooseberry, Ribes Uva Crispa L., Volatiles

Kamimura, J. A.; Santos, E. H.; Hill, L. E.; Gomes, C. L.
Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin
Antimicrobial Activity, Antioxidant Activity, Carvacrol, (2-Hydroxy)propyl-beta-cyclodextrin Inclusion Complexes, Natural Antimicrobial, Food Industry
LWT - Food Science and Technology, 2014, In Press; DOI:10.1016/j.lwt.2014.02.014

Sabater-Jara, A. B.; Almagro, L.; Pedreño, M. A.
Induction of extracellular defense-related proteins in suspension cultured-cells of Daucus carota elicited with cyclodextrins and methyl jasmonate
Cyclodextrin, Daucus Carota, Methyl Jasmonate, Pathogenesis-Related Proteins, Cell-Wall-Degrading Enzymes
Plant Physiology and Biochemistry, 2014, 77, 133–139; DOI:10.1016/j.plaphy.2014.02.006

6. CDs for other Industrial Applications

β-Biguanidinium-cyclodextrin: a supramolecular mimic of mitochondrial ADP/ATP carrier protein
AMP/ADP/ATP, Mimic, β-Cyclodextrin, Docking Simulation, Arginine Residues
Tetrahedron, 2014, 70(14), 2378–2382; DOI:10.1016/j.tet.2014.02.041
Chiu, C-W.; Huang, T-K; Wang, Y-C; Alamani, B. G.; Lin, J-J

Intercalation strategies in clay/polymer hybrids

Exfoliation, Graphene, Intercalation, Layered Double Hydroxide, Poly(oxypropylene) Amine, Smectite Clay

Dave, B. P.; Ghevariya, C. M.; Bhatt, J. K.; Dudhagara, D. R.; Rajpara, R. K.

Enhanced biodegradation of total polycyclic aromatic hydrocarbons (tPAHs) by marine halotolerant achromobacter xylosoxidans using Triton X-100 and β-cyclodextrin – a microcosm approach

Achromobacter xylosoxidans, Bioremediation, Microcosm, Triton X-100, Chrysene, Glucose as a Co-Substrate

Fan, B.; Wei, G.; Zhang, Z.; Qiao, N.

Characterization of a supramolecular complex based on octadecylamine and β-cyclodextrin and its corrosion inhibition properties in condensate water

Mild Steel, AES, Acid Corrosion, Anodic Film, 1H NMR, FT-IR, XRD, DSC

Gaich, T.

Chapter 5.15 The Arene–Alkene Photocycloaddition

Exciplex, Meta Photocycloaddition, Photocycloaddition, Polycyclic Structures

Griesbeck, A.G.; Franke, M.

Chapter 5.04 Photochemical Cycloadditions

Intermolecular and Intramolecular Photochemistry, Selectivity, Sensitization

Han, F.; Liu, Q.; Lai, X.; Li, H.; Zeng, X.

Compatibilizing effect of β-cyclodextrin in RDP/phosphorus-containing polyacrylate composite emulsion and its synergism on the flame retardancy of the latex film

Compatibility, Flame Retardancy, Phosphorus-Containing Polyacrylate, Resorcinol Bis(diphenyl phosphate), β-Cyclodextrin, β-CD was Used as a Compatibilizer, Quality of the Char Formation

Hu, J.; Lu, J.

Chapter 14 - Smart polymers for textile applications

Moisture-Responsive Polymer, pH-Responsive Hydrogel, Smart Textiles, Thermal-Responsive Hydrogel, Thermal-Responsive Polymer

Iwasawa, N.

Chapter 5.08 Thermal and Metal-Induced [3+2] Cycloadditions

1,3-Dipole, Allylsilane, C-H Activation, Fischer Carbene Complex, Lu Reaction, Meta-Cycloaddition Of Benzene, Methylene cyclopropane, Reductive Coupling, Trimethylenemethane, Vinylcyclopropane

Kato, K.; Ise, T.; Ito, K.

Crystal structure transition of polyrotaxanes attributable to competing rings and backbone induced by in situ modification of the backbone

Cyclodextrin, In-situ Modification, Polyrotaxane, Catalytic Hydrogenation Of Polybutadiene-Based Polyrotaxane, γ-Cyclodextrin

Polymer, 2014, 55 1514–1519; DOI:10.1016/j.polymer.2014.01.044

Rubio-Clemente, A.; Torres-Palma, R. A.; Peñuela, G. A.

Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review

Advanced Oxidation Process, Ozonation, Photolysis, Polycyclic Aromatic Hydrocarbon, Wastewater Treatment

7. CDs in Sensing and Analysis

Anubala, S.; Sekar, R.; Nagaiah, K.

Development and validation of an analytical method for the separation and determination of major bioactive curcuminoids in curcuma longa rhizomes and herbal products using non-aqueous capillary electrophoresis

Curcuma Longa Rhizomes, Curcuminoids, Herbal Products, Method Development, NACE

Talanta, 2014, 123, 10-17; DOI:10.1016/j.talanta.2014.01.017

Chen, M-L.; Ma, L-Y.; Chen, X-W.

New procedures for arsenic speciation: A review

Arsenic Speciation, Preconcentration/Separation, Review, Sample Pretreatment

Talanta, 2014, In Press; DOI:10.1016/j.talanta.2014.02.037

Costas-Mora, I.; Romero, V.; Lavilla, I.; Bendicho, C.

An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis

Chemiluminescence, Fluorescence, Liquid-Phase Assay, Luminescent Probe, Multiplexing Analysis, Optical Sensing, Reversible System, Solid-Phase Assay

TrAC Trends in Analytical Chemistry, 2014, 57, 64–72; DOI:10.1016/j.trac.2014.02.004
Evans, S. E.; Kasprzyk-Hordern, B.

Applications of chiral chromatography coupled with mass spectrometry in the analysis of chiral pharmaceuticals in the environment

Chiral Drugs, Environment, Illicit, Mass Spectrometry, Pharmaceuticals, Wastewater

Trends in Environmental Analytical Chemistry, 2014, 1, e34-e51; DOI:10.1016/j.teac.2013.11.005

Ferey, L.; Delaunay, N.; Rutledge, D. N.; Huertas, A.; Raoul, Y.; Gareil, P.; Vial, J.; Rivals, I.

An experimental design based strategy to optimize a capillary electrophoresis method for the separation of 19 polycyclic aromatic hydrocarbons

Capillary Zone Electrophoresis, Cyclodextrins, Design Of Experiments, Edible Oil, Polycyclic Aromatic Hydrocarbons, Sulfobutylether-β-CD, Methyl-β-CD

Haginaka, J.

Chiral separations: liquid chromatography

Chiral Derivatization, Chiral Ligand Exchange, Chiral Mobile-Phase Additive, Chiral Stationary Phase, Crown Ethers, Donor–Acceptor Phases, Enantioseparation, Liquid Chromatography, Macrocyclic Antibiotics, Polysaccharides, Proteins

Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2014; DOI:10.1016/B978-0-12-409547-2.10942-4, Elsevier

Hamilton, A.; Breslin, C. B.

The development of a highly sensitive urea sensor due to the formation of an inclusion complex between urea and sulfonated-β-cyclodextrin

Cyclodextrin, Inclusion Complexation, Polypyrrole, Urea Sensor, Urease, Electropolymerisation, Cyclic Voltammetry

Electrochimica Acta, 2014, 125, 250-257; DOI:10.1016/j.electacta.2014.01.096

He, B.; Lloyd, D. K.

Chapter 10 – Chiral methods

Analytical Method Development, Chiral Column Screen, Chirality, Chromatography, Circular Dichroism, Electrophoresis, Enantiomer, Polarimetry, Stereoisomer, Validation

Huang, J.; Wang, L.; Shi, C.; Dai, Y.; Gu, C.; Liu, J.

Selective detection of picric acid using functionalized reduced graphene oxide sensor device

Graphene, Picric Acid, Reduced Graphene Oxide, Sensor, β-Cyclodextrin, 1-Pyrenebutyl-amino-β-cyclodextrin

Jullian, C.; Fernández-Sandoval, S.; Rojas-Aranguez, M.; Gómez-Machuca, H.; Salgado-Figueroa, P.; Cellis-Barros, C.; Zapata-Torres, G.; Adam, R.; Abarca, B.

Detecting Ni(II) in aqueous solution by 3-(2-pyridyl)-[1,2,3]triazolo[1,5-a]pyridine and dimethyl-β-cyclodextrin

Fluorescence, Pyridyltriazolopyridine, Sensor, Supramolecular Sensitizer, DIMEB

Carbohydrate Polymers, 2014, 107, 124–131; DOI:10.1016/j.carbpol.2014.02.043
Li, X.; Zhou, Z.

Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases

Chiral Stationary Phase, Enantioseparation, HPLC, Ionic Liquid, Mono-6-deoxy-6-(p-N,N,N-trimethylaminobenzimide)-β-CD Nitrate and Tosylate, Mono-6-deoxy-6-(p-N-methylimidazolemethylbenzimide)-β-CD Nitrate and Tosylate

Prakash, S.; Yeom, J.

Chapter 6 - Energy and environmental applications

Savina, I.N.; Galaev, I. Yu.; Mikhalovsky, S.V.

Chapter 13 - Smart polymers for bioseparation and other biotechnological applications

Adsorbents, Affinity Precipitation, Bioseparation, Catalysts, Chromatography, Membranes, Smart Polymer, Two-Phase Systems;

Smart Polymers and their Applications, 2014, 408-436; DOI:10.1533/9780857097026.2.408, Woodhead Publishing

Enantiomeric separation of functionalized ethano-bridged tröger bases using macrocyclic cyclofructan and cyclodextrin chiral selectors in high-performance liquid chromatography and capillary electrophoresis with application of principal component analysis

Cyclodextrin-Based Stationary Phase, Cyclofructan-based Stationary Phase, Enantiomer, Functionalized Ethano-Tröger Base, Principal Component Analysis

Zhang, Z.; Gu, S.; Ding, Y.; Shen, M.; Jiang, L.

Mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin

Differential Pulse Voltammetry, Electro-Deposited Grapheme, Nanocomposite Film, Polymerized β-Cyclodextrin, Quercetin

Biosensors and Bioelectronics, 2014, 57, 239–244; DOI:10.1016/j.bios.2014.02.014

Edited and produced by: CYCLOLAB
Homepage: www.cyclolab.hu
H-1525 P.O. 435, Budapest, Hungary
Tel: (361) 347-6060
Fax: (361) 347-6068
e-mail: cyclolab@cyclolab.hu