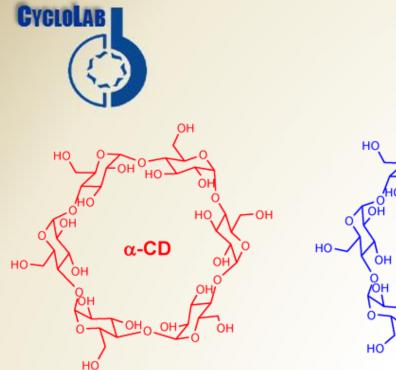
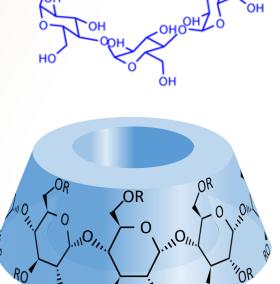


Cyclodextrin-based Molecular Coating for the Protection of Sensitive Essential Oils




Mihály Bálint ISEO 2017, Pécs, Hungary, 12 September 2017

- Cyclodextrins
- Cyclodextrin / essential oil inclusion complexes
- Regulatory status of cyclodextrins
- Marketed product examples
- Future prospects

OH

OH

HO

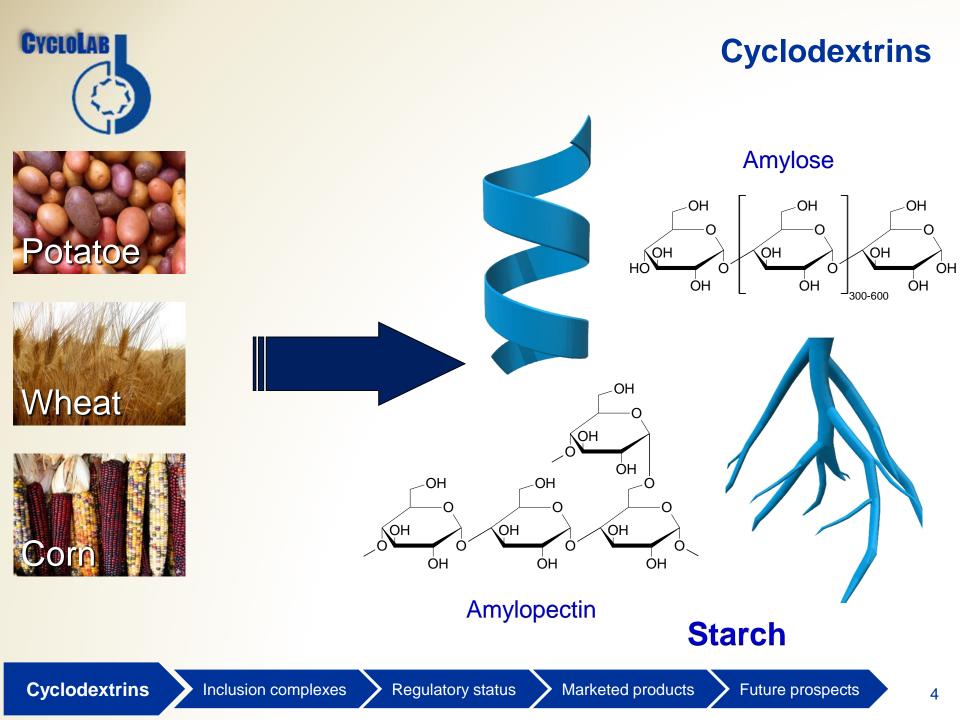

-OH

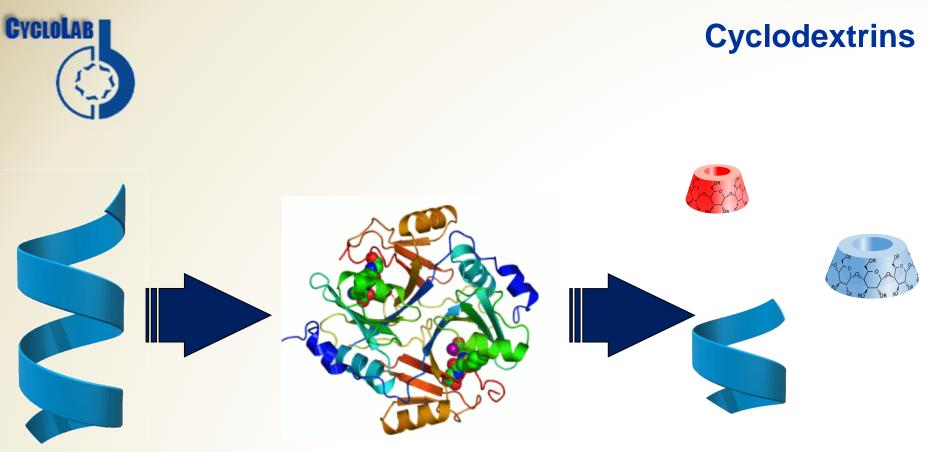
OPHO

β-CD

OH HO ОН ΉO ÔН OH OH HO HO ÓН γ-CD 0 ⁄он OH OH он7 .оно OH Ò. Ο HO ĨОН OF ΟН

ÔH

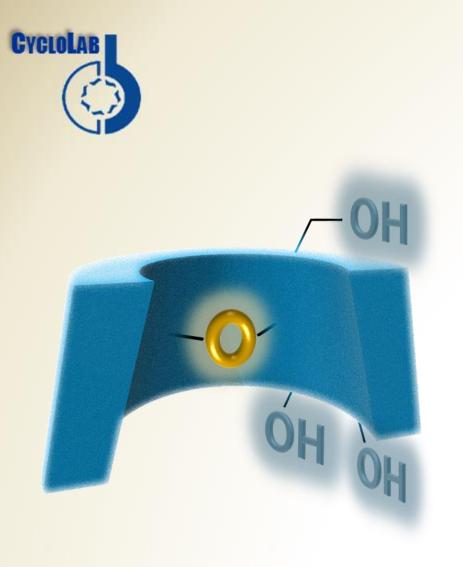



HO

OR0// 011. \mathbf{O} OR OR RO

RO ÖR OR RO RO

Cyclodextrins



CD Glycosyltransferase (Bacillus Macerans)

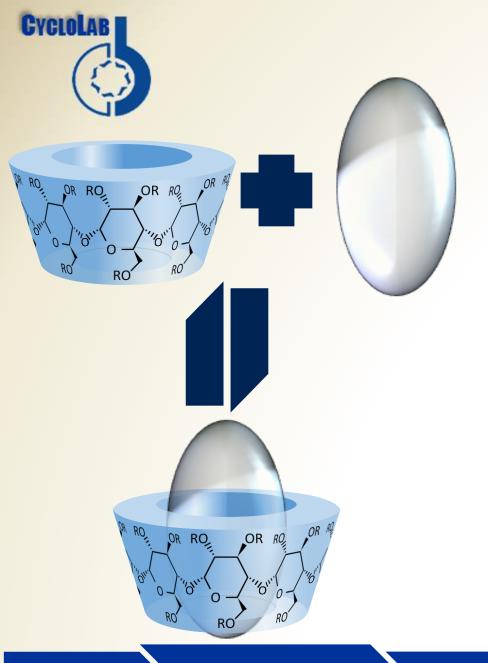
RO BR RO RO RO RO RO

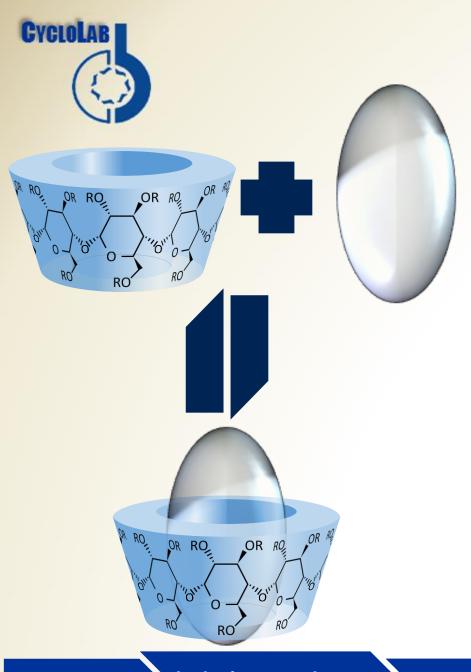
Conversion mixture

Cyclodextrins

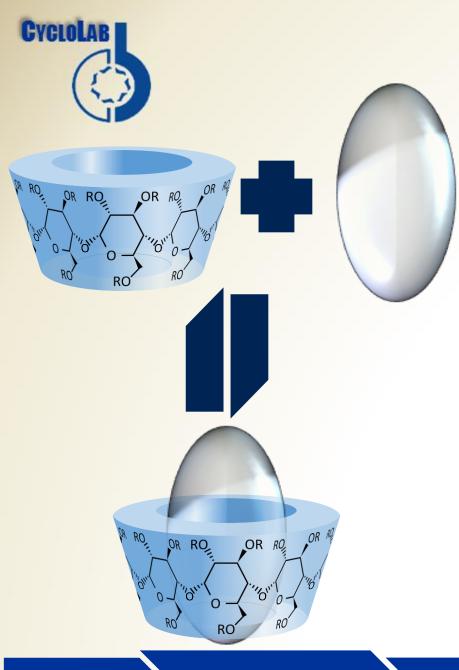
α-CD

β-CD

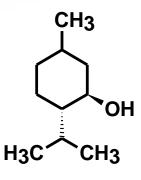

γ-CD


Cyclodextrins

Inclusion complexes


Regulatory status

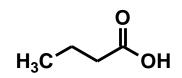
Marketed products



Improvement of physical and chemical stability (volatile, oxygen-, light- and heat sensitive compounds)
Reduction of undesirable tastes and odors

Increased solubility in water

•Stable aqueous solutions of insoluble compounds can be prepared without the use of organic co-solvents or surfactants


- Enhanced rate of dissolution
- Improved wettability
- Liquids can be transformed into solid form
- Extended release of compounds
- •Alleviation of local irritations (reduced side effects)
- Enhanced absorption
- Incompatible compounds can be mixed and used together in complexed form
- •Stabilization of emulsions and suspensions

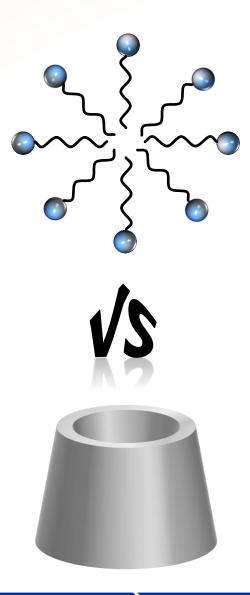
Menthol

СН₃ О Н₃С ОН

Isovaleric acid

Butyric acid

•Improvement of physical and chemical stability (volatile, oxygen-, light- and heat sensitive compounds)


Reduction of undesirable tastes and odors

Increased solubility in water

•Stable aqueous solutions of insoluble compounds can be prepared without the use of organic co-solvents or surfactants

- Enhanced rate of dissolution
- Improved wettability
- Liquids can be transformed into solid form
- •Extended release of compounds
- •Alleviation of local irritations (reduced side effects)
- Enhanced absorption
- Incompatible compounds can be mixed and used together in complexed form
- •Stabilization of emulsions and suspensions

Inclusion complexes

•Improvement of physical and chemical stability (volatile, oxygen-, light- and heat sensitive compounds)

- Reduction of undesirable tastes and odors
- Increased solubility in water

•Stable aqueous solutions of insoluble compounds can be prepared without the use of organic co-solvents or surfactants

- Enhanced rate of dissolution
- Improved wettability
- •Liquids can be transformed into solid form
- •Extended release of compounds
- •Alleviation of local irritations (reduced side effects)
- Enhanced absorption
- Incompatible compounds can be mixed and used together in complexed form
- Stabilization of emulsions and suspensions

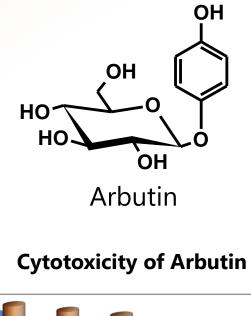
•Improvement of physical and chemical stability (volatile, oxygen-, light- and heat sensitive compounds)

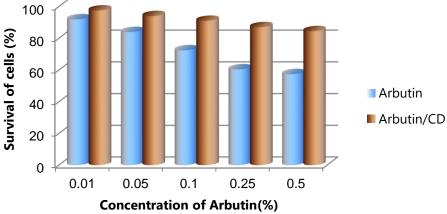
- Reduction of undesirable tastes and odors
- Increased solubility in water

•Stable aqueous solutions of insoluble compounds can be prepared without the use of organic co-solvents or surfactants

- Enhanced rate of dissolution
- Improved wettability
- Liquids can be transformed into solid form
- •Extended release of compounds
- •Alleviation of local irritations (reduced side effects)
- Enhanced absorption
- Incompatible compounds can be mixed and used together in complexed form

•Stabilization of emulsions and suspensions


- •Improvement of physical and chemical stability (volatile, oxygen-, light- and heat sensitive compounds)
- Reduction of undesirable tastes and odors
- Increased solubility in water


•Stable aqueous solutions of insoluble compounds can be prepared without the use of organic co-solvents or surfactants

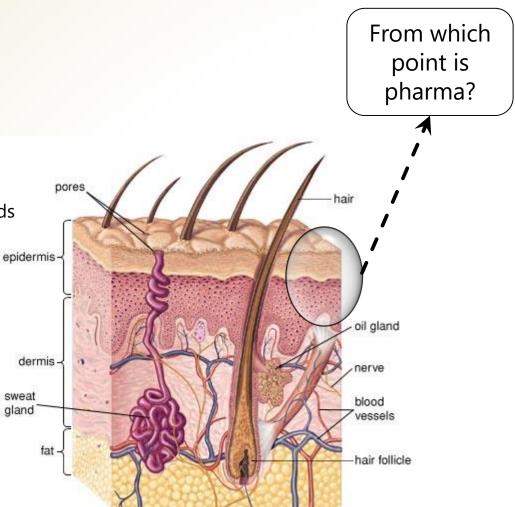
- Enhanced rate of dissolution
- Improved wettability
- Liquids can be transformed into solid form
- Extended release of compounds
- •Alleviation of local irritations (reduced side effects)
- Enhanced absorption
- Incompatible compounds can be mixed and used together in complexed form

•Stabilization of emulsions and suspensions

Inclusion complexes

 Improvement of physical and chemical stability (volatile, oxygen-, light- and heat sensitive compounds)

- Reduction of undesirable tastes and odors
- Increased solubility in water


•Stable aqueous solutions of insoluble compounds can be prepared without the use of organic co-solvents or surfactants

- Enhanced rate of dissolution
- Improved wettability
- •Liquids can be transformed into solid form
- •Extended release of compounds
- •Alleviation of local irritations (reduced side effects)

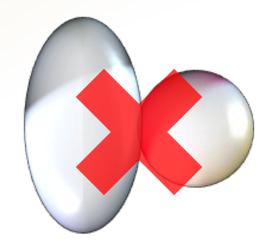
•Enhanced absorption

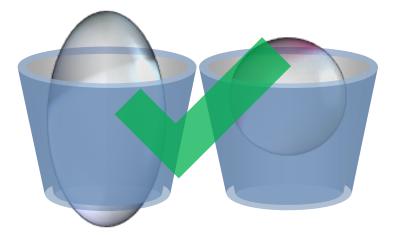
 Incompatible compounds can be mixed and used together in complexed form

•Stabilization of emulsions and suspensions

•Improvement of physical and chemical stability (volatile, oxygen-, light- and heat sensitive compounds)

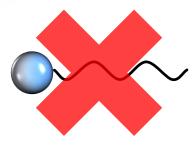
- Reduction of undesirable tastes and odors
- Increased solubility in water


•Stable aqueous solutions of insoluble compounds can be prepared without the use of organic co-solvents or surfactants


- •Enhanced rate of dissolution
- Improved wettability
- •Liquids can be transformed into solid form
- •Extended release of compounds
- •Alleviation of local irritations (reduced side effects)
- Enhanced absorption

 Incompatible compounds can be mixed and used together in complexed form

Stabilization of emulsions and suspensions


Inclusion complexes

- Improvement of physical and chemical stability (volatile, oxygen-, light- and heat sensitive compounds)
- Reduction of undesirable tastes and odors
- Increased solubility in water
- •Stable aqueous solutions of insoluble compounds can be prepared without the use of organic co-solvents or surfactants
- •Enhanced rate of dissolution
- Improved wettability
- Liquids can be transformed into solid form
- •Extended release of compounds
- •Alleviation of local irritations (reduced side effects)
- Enhanced absorption
- Incompatible compounds can be mixed and used together in complexed form
- •Stabilization of emulsions and suspensions

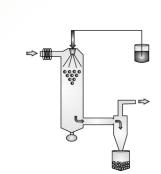
Methods of preparation of inclusion complexes:

Coprecipitation

Coevaporation

Kneading

Mechanochemical activation


Sealed heating method

Cyclodextrins

Methods of preparation of inclusion complexes:

Coevaporation

Kneading

Mechanochemical activation

Sealed heating method

Methods of preparation of inclusion complexes:

Coprecipitation

Kneading

Coevaporation

Inclusion complexes

Mechanochemical activation

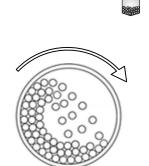
Sealed heating method

Cyclodextrins

Regulatory status

Ŧ

000

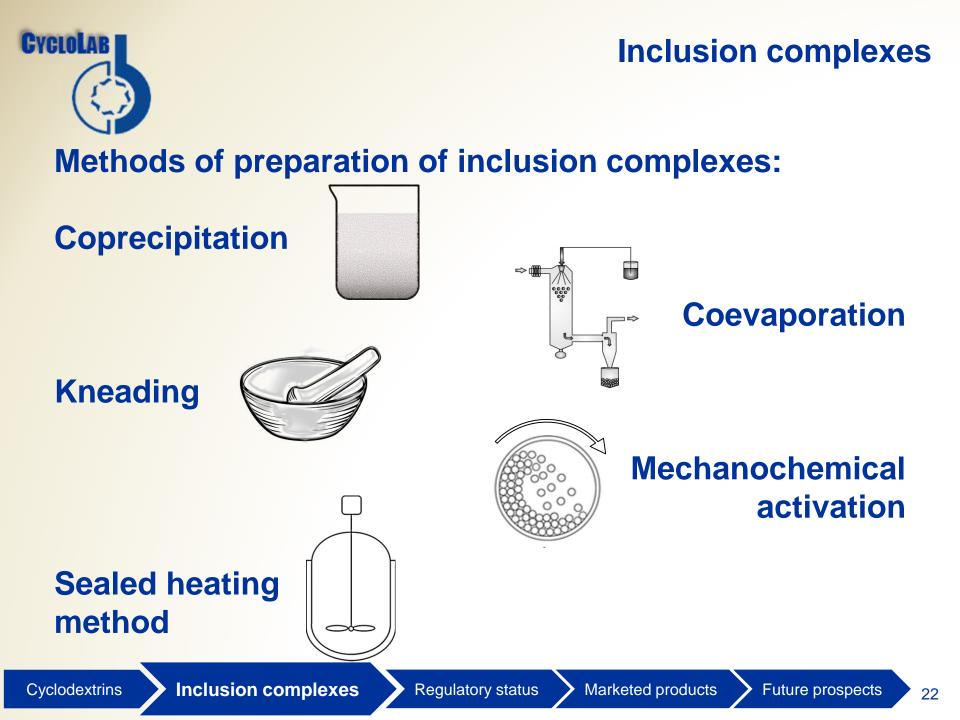


Methods of preparation of inclusion complexes:

Kneading

Coprecipitation

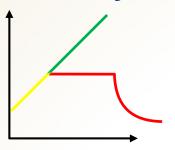
Mechanochemical activation


Coevaporation

Sealed heating method

Cyclodextrins

Regulatory status


21

Analysis of inclusion complexes:

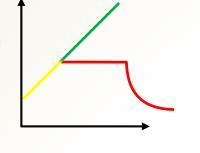
Phase solubility study

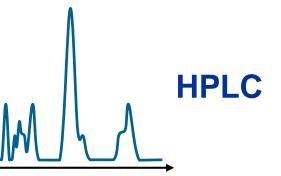
HPLC

GC, head-space **GC**

CE

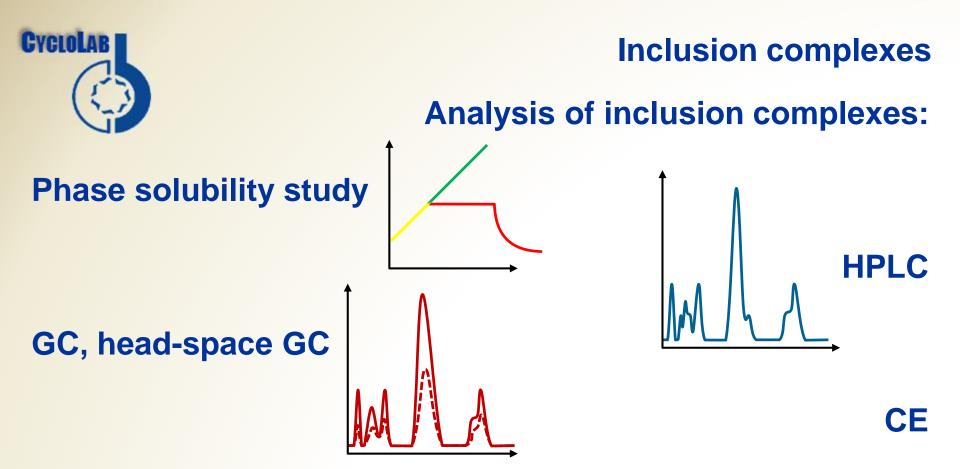
Thermoanalytical methods: TGA, DTG, DSC


Spectroscopic methods: NMR, Raman, fluorescence, IR, UV


Cyclodextrins

Analysis of inclusion complexes:

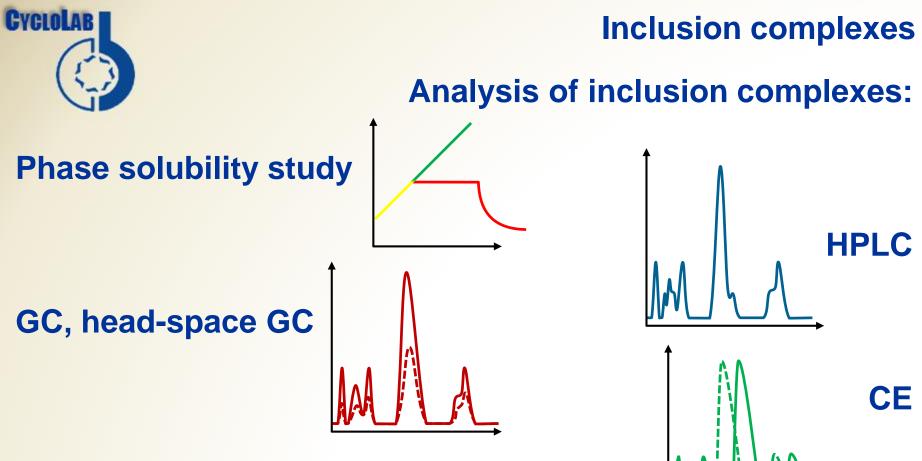
Phase solubility study


GC, head-space **GC**

CE

Thermoanalytical methods: TGA, DTG, DSC

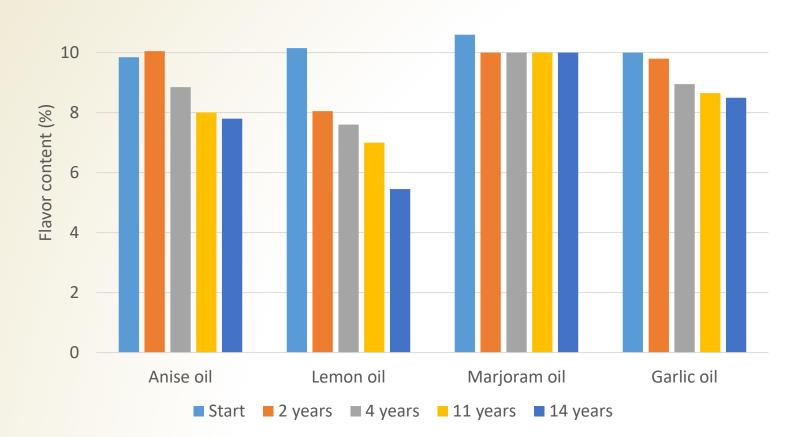
Spectroscopic methods: NMR, Raman, fluorescence, IR, UV


Cyclodextrins

Thermoanalytical methods: TGA, DTG, DSC

Spectroscopic methods: NMR, Raman, fluorescence, IR, UV

Cyclodextrins


Thermoanalytical methods: TGA, DTG, DSC

Spectroscopic methods: NMR, Raman, fluorescence, IR, UV

12

Inclusion complexes

Regulatory status in food

	EU	USA	Japan
αCD	NOVEL FOOD INGREDIENT (2008/413/EC Commission Decision)	GRAS	NATURAL PRODUCT
βCD	 FOOD ADDITIVE quantum satis, only foods in tablet and coated tablet form max. 500 mg/l, only flavored powdered instant drinks 	GRAS	NATURAL PRODUCT
γCD	NOVEL FOOD INGREDIENT (2012/288/EU Commission Implementing Decision)	GRAS	NATURAL PRODUCT

Regulatory status in food

Since 2007 nutrition and health claims made on foods within the EU are regulated by the 1924/2006/EC of the European Parliament and of the Council. In the EU Register on nutrition and health claims an approved claim can be found for α CD:

"Consumption of alpha-cyclodextrin as part of a starch-containing meal contributes to the reduction of the blood glucose rise after that meal".

The claim may be used for food which contains at least 5 g of alphacyclodextrin per 50 g of starch in a quantified portion as part of the meal.

Regulatory status in pharmaceuticals

	Monograph	Administration route of formulation	
αCD	USP, Ph.Eur., JP	Oral, ocular, parenteral	
βCD	USP, Ph.Eur., JP	Oral, nasal, rectal, dermal, ocular	
γCD	USP, Ph.Eur., JP	Oral, dermal, parenteral	
ΗΡβCD	USP, Ph.Eur., JP	Oral, nasal, rectal, dermal, ocular, parenteral	
ΗΡγCD	-	Ocular	
SβECD	USP, JP	Oral, nasal, rectal, dermal, ocular, parenteral	
RAMEβ	-	Nasal, ocular	

Regulatory status in cosmetics

EC Regulation (v.2)

Search Results

<u>Name</u> or CAS/EC #	cyclodextrin		Version	EC Regulation
Scope	All	T	Status	Active •

	Tot					
#	INCI Name/Substance Name	CAS No.	EC No.	Restriction/ Annex/Ref #		
1.	ACETYL CYCLODEXTRIN	-	-			
2.	BRASSICA SPROUT EXTRACT					
3.	CYCLODEXTRIN	7585-39-9 / 12619-70-4	231-493-2			
4.	CYCLODEXTRIN CROSSPOLYMER	-	-			
5.	CYCLODEXTRIN HYDROXYPROPYLTRIMONIUM CHLORIDE	-	-			
6.	CYCLODEXTRIN LAURATE					
7.	DIMALTOSYL CYCLODEXTRIN	-	-			
8.	HYDROXYETHYL CYCLODEXTRIN	-	-			
9.	HYDROXYPROPYL CYCLODEXTRIN	128446-33-3 / 128446-35-5	- / -			
10.	MALTOSYL CYCLODEXTRIN	104723-60-6	-			
11.	METHYL CYCLODEXTRIN	128446-36-6	*603-270-3			
12.	SODIUM CYCLODEXTRIN SULFATE	37191-69-8				
13.	SODIUM HYDROXYPROPYL CYCLODEXTRIN OCTENYLSUCCINATE					

Total: 13

CYCLOLAB **Regulatory status in cosmetics** EC Regulatio # INCI Name/Substance Name Search Results 1. ACETYL CYCLODEXTRIN Name or Version EC Regulation v cyclodextrin BRASSICA SPROUT EXTR 2. CAS/EC # Scope All • Status Active ۳ з. CYCLODEXTRIN Go » 4. CYCLODEXTRIN CROSSPOLYMER Total Restrictio INCI Name/Substance Name CAS No. EC No. Annex/Re 5. CYCLODEXTRIN HYDROXYPROPYLTRIMONIUM ACETYL CYCLODEXTRIN 1. CHLORIDE BRASSICA SPROUT EXTRACT 2. CYCLODEXTRIN LAURATE 6. CYCLODEXTRIN 231-493-2 з. 7585-39-9 / 12619-70-4 7. DIMALTOSYL CYCLODEXTRIN CYCLODEXTRIN CROSSPOLYMER 4. 5. CYCLODEXTRIN HYDROXYPROPYLTRIMONIUM 8. HYDROXYETHYL CYCLODEXTRIN CHLORIDE 6. CYCLODEXTRIN LAURATE 9. HYDROXYPROPYL CYCLODEXTRIN 7. DIMALTOSYL CYCLODEXTRIN HYDROXYETHYL CYCLODEXTRIN 8. 10. MALTOSYL CYCLODEXTRIN HYDROXYPROPYL CYCLODEXTRIN 128446-33-3 / 128446-35-5 - / -9. 10. MALTOSYL CYCLODEXTRIN 104723-60-6 11. METHYL CYCLODEXTRIN *603-270-3 11. METHYL CYCLODEXTRIN 128446-36-6 12. SODIUM CYCLODEXTRIN SULFATE 37191-69-8 12. SODIUM CYCLODEXTRIN SULFATE SODIUM HYDROXYPROPYL CYCLODEXTRIN 13. SODIUM HYDROXYPROPYL CYCLODEXTRIN OCTENYLSUCCINATE OCTENYLSUCCINATE Total:

Cyclodextrins

Future prospects

Marketed products

CycloLab's product

Lemon essential oil / β-cyclodextrin complex diluted with fructose

Cyclodextrins

Inclusion complexes

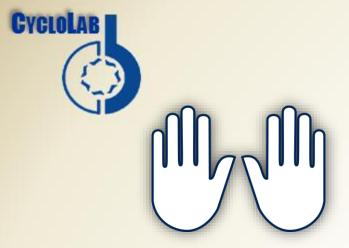
Regulatory status

Marketed products

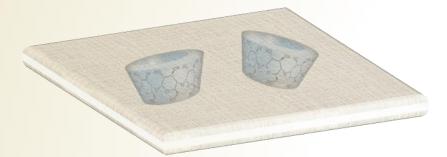
Future prospects

Marketed products

Japanese market

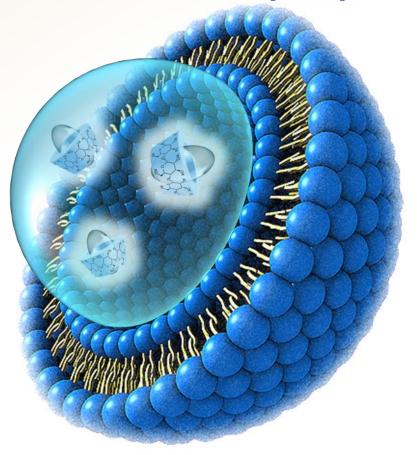

Garlic essential oil / β-cyclodextrin complex in a spice mixture

Future prospects



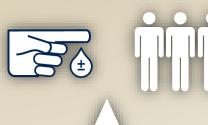
Essential oils obtained as CD complexes in solid state (selection):

Garlic, tarragon, caraway, pepper, cinnamon, orange, bergamot, lemon, coriander, eucalyptus, clove, fennel, juniper, lavender, marjoram, basil, turpentine, sage, thyme and small-leaved mint essential oil



Krupcik, J.; Gorovenko, R.; Spanik, I.; Armstrong, D. W.; Sandra, P. Enantioselective comprehensive two-dimensional gas chromatography of lavender essential oil Journal of Separation Science, 2016, DOI:10.1002/jssc.201600986

Saini, S.; Quinot, D.; Lavoine, N.; Belgacem, M. N.; Bras, J. β-Cyclodextrin-grafted TEMPO-oxidized cellulose nanofibers for sustained release of essential oil Journal of Materials Science, 2017, 52, 3849-3861


Future prospects

Sebaaly, C.; Charcosset, C.; Stainmesse, S.; Fessi, H.; Greige-Gerges, H. Clove essential oil-incyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor Carbohydrate Polymers, 2016, 138, 75-85

Cyclodextrin-enabled Product Development

GMP Synthesis and Production

Analytical Services

Custom Cyclodextrin Synthesis 37