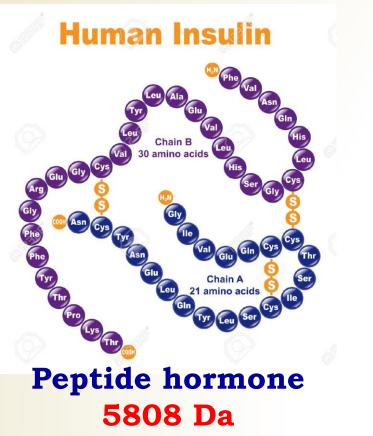
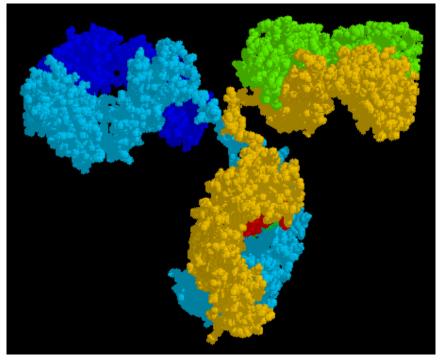


Cyclodextrin enabled

biologics

A novel way of utilizing CDs




Cyclodextrins are molecular containers. As of 2017, 61 products of small molecules are formulated with CDs.

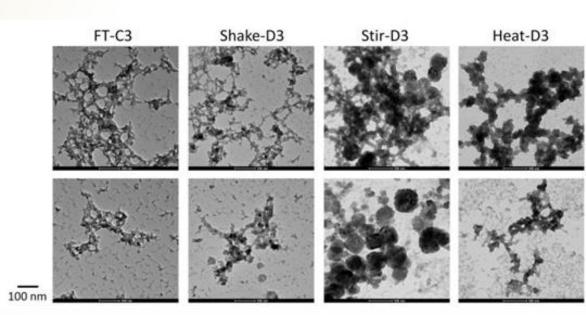
Biological active substances (big molecules), proteins, peptides, monoclonal antibodies gained immense interest in product development recently

Monoclonal antibodies ~1300 amino acids, 150 000 Da ³

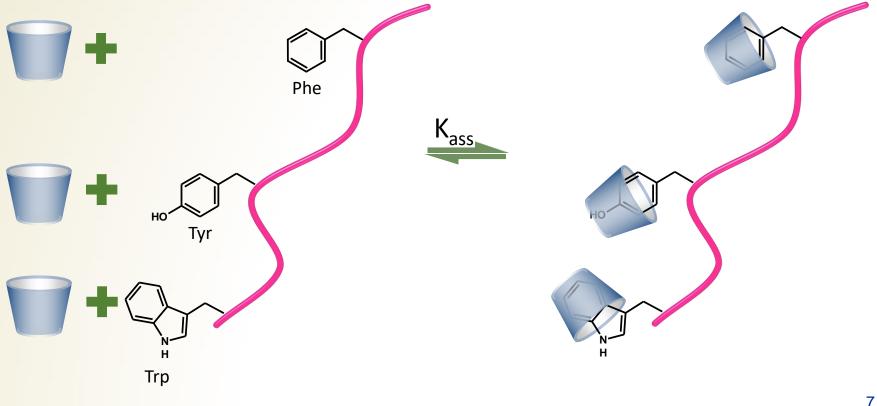
Why to use CDs in protein and biological formulations:

- Safer than most current excipients (e.g. Tween) no peroxide formation, corresponding immunogenicity, degradation
- Prevention of aggregation, delay folding
- Less protein adsorption onto container surface
- Reduce/maintain viscosity
- Improve injectability
- Physical and chemical stabilization of proteins
- Life-cycle management

Cyclolab has recently been putting immense efforts to develop cyclodextrins that are particularly suitable for excipients in protein formulations.

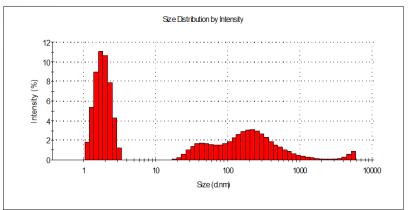

During these studies, several therapeutically relevant model compounds are included, yet we are open to test how well our CDs fit your particular monoclonal antibody or other type of protein.

Outcomes of protein aggregation

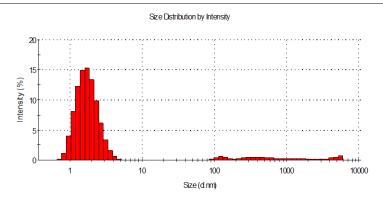

- Decreased efficiency
- Altered pharmacokinetics
- Immunogenicity, irritation, anaphylaxis
- Short shelf-life, poor stability

Cyclodextrins are able to interact with proteins and polypeptides on several levels. The classical inclusion involves aromatic amino acids

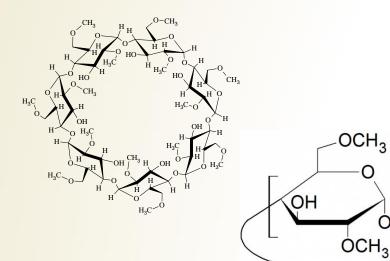
Main characteristics of the CD-protein interactions are:


- CDs attract to hydrophobic regions of the proteins
- The interactions are host-guest and electrostatic type
- CDs act like artificial chaperons
- Certain CDs act like chaotropic agents and delay protein-protein interaction and thereby folding in solution

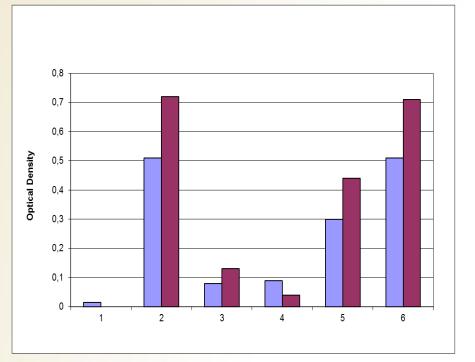
Han (2007), Serno (2010)

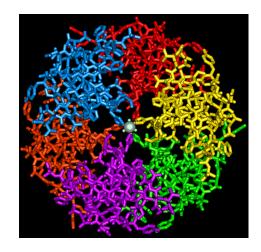


Cyclodextrin's effect on peptide aggregation


TT-232, heptapeptide H_2N , H_2N

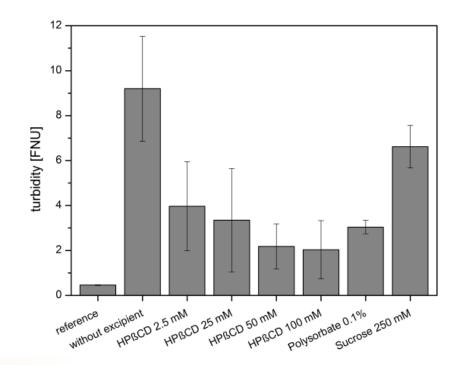
Without additive


With DIMEB-CD



Kéri (2007)

Cyclodextrin's effect on insulin aggregation



insulin hexamer

1. Control, 2. Stirred without CD, 3. HPBCD, 4. alfa-CD, 5. beta-CD, 6. gamma-CD

Cyclodextrin's effect on Ig B aggregation

Turbidity of 1.8 mg/mL IgGB aqueous solution after 1 h stirring

Hartl (2013)

Cyclodextrins or TWEEN?

- Tween-like detergents efficiently prevent protein aggregation, prevent immunogenicity
- Polysorbate 80 is the most common, they are widely used
- However, their degradataion leads to aldehydes, epoxy-acids and peroxides damaging proteins

Some protein based products, their shelflives and additives

Product	Active	Shelf Life	Ingredients
Remicade	infliximab	3 years at 2 °C−8 °C.	dibasic sodium phosphate dihydrate, monobasic sodium phosphate monohydrate, polysorbate 80 , and sucrose. No preservatives are present.
Humira	Adalimumab	2 years at 2 °C−8 °C.	sodium chloride, monobasic sodium phosphate dihydrate, dibasic sodium phosphate dihydrate, sodium citrate, citric acid monohydrate, mannitol, polysorbate 80 and water for injections
Herceptin	trastuzumab	4 years at 2 °C−8 °C.	histidine hydrochloride, histidine, trehalose dihydrate, polysorbate 20
Vetsulin	porcine insulin zinc suspension	42 days	zinc chloride, methylparaben, sodium chloride, sodium acetate, water
NovoLog	insulin aspart	28 days	glycerin, phenol, metacresol, zinc, disodium hydrogen phosphate dihydrate, sodium chloride and water for injection
ORTHOCLONE	muromonab-CD3	9 months	sodium phosphate, monobasic sodium phosphate, dibasic sodium chloride polysorbate 80 water
Oncaspar	pegaspargase	8 months (2-5°C)	dibasic sodium phosphate dihydrate, dibasic sodium phosphate heptahydrate, sodium chloride, water for injection

Cyclodextrins and mAbs

mAb: polyionic protein with hydrophobic surfaces

•The hydrophobic surface induces aggregation

•The net surface charge is minimal at pH 5 - 7.5 \rightarrow no electrostatic repulsion

Consequence: mAb-mAb aggregation increases

•Cyclodextrin masking of the hydrophobic surface reduces van der Waals interactions

•Increase in the surface charge increases electrostatic repulsion

Result: mAb-mAb aggregation decreases

Cyclolab offers:

- Provide a cyclodextrin "starting kit" to evaluate the feasbility of CDs towards a particular problem
- Supply commercial quantities of any cyclodextrin during development and market phases
- Provide formulation, analytical or even custom synthesis services to establish a stable and efficient formulation with a target protein