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Shift of paradigm on HPBCD as
cholesterol sequestering agent in cells

It is well known for the readers of the Cyclodextrin News [1–4] that BCDs, especially methyl
BCD and the less toxic HPBCD remove cholesterol accumulated in cells of patients

• with Niemann Pick type C1 disease, where the lack of npc1 and/or npc2 genes
responsible for the synthesis of NPC1 and NPC2 proteins transporting cholesterol
out  of  late  endosomes  cause  the  lysosomal  storage  disorder  of  cholesterol
resulting in symptoms of childhood neurodegeneration and these symptoms are
improved by HPBCD treatment;

• with  cancer,  such  as  leukemia,  where  HPBCD  treatment  disturbs  cholesterol
homeostasis;

• with atherosclerosis, where the cholesterol efflux from atherosclerotic plaques is
increased via mobilization of cholesterol with HPBCD;

• with  cystic  fibrosis,  where  the  malfunction  of  cholesterol-enriched  pulmonary
surfactant can be restored by methyl BCD.

The mechanism is not completely understood but it was conceivable to suggest that the high
affinity of BCDs to cholesterol is fundamental. 

Witkowski et al.  [5] reanalyzed existing data of three genome-wide association studies (of
1000-2000 subjects each) on genes involved in breast cancer deaths caused by metastasis.
The computational biostatistics approach allowed identification of many genes associated to
endo-/exocytosis, and to translocation of phospholipids entering the phosphatidylinositol (Fig.
1) cycle. The endo-/exocytosis of oncoproteins, such as growth factor receptors and adhesion
molecules, such as integrins and annexins plays a definitive role in progression, migration and
invasion  of  cancer  cells.  The  genetic  study  showed  that  downregulation  of  circulating
phospholipids helps to control endo-/exocytosis processes. These novel findings suggest that
sequestering phospholipids could be beneficial to control local spread of cancer cells. Based on
these  results  it  was  hypothesized that  the  beneficial  effect  of  BCDs is  in  connection  with
phospholipid sequestration rather than with removal of cholesterol.

Fig. 1 Chemical structure of phosphatidyl inositol

Edited and produced by: CYCLOLAB – page 1

O

O

OH

OH OH OH

OH
O

O

O

O NH3
+P

O

O

OH



VOLUME 32. No 2.

Various studies –reviewed by Withowski et al.— demonstrated that methyl BCD and HPBCD
were found in higher concentration of tumor cells than in the others and were effective in
various  cancers,  including  breast,  ovarian,  lung  cancers,  melanoma  and  lymphoma.  BCDs
showed  beneficial  effects  in  several  other  diseases  known  to  involve  disorders  in
endo-/exocytosis,  such as  Alzheimer disease,  Parkinson disease and atherosclerosis.  These
effects were earlier explained by initiating cholesterol efflux and the effects on phospholipids
were neglected.

On the other hand, Irie & Uekama published in their review on interaction of CDs with cellular
membranes as early as in  1999 that  not only cholesterol  but  also phosphatidylcholine and
sphingomyelin were removed from cell membranes by BCDs [6]. So, it is a long-known fact that
BCDs interact also with phospholipids but this has been overlooked so far. 

Witkowski et al. suggest to use alpha-CD (ACD) derivatives, namely  HPACD, for scavenging
phospholipids  as  a  novel  therapeutic  intervention  to  control  endocytosis  and  with  this  the
spread of cancer. The ACD and its derivatives are selective for phospholipids, do not interact
with cholesterol, and they are less toxic, therefore they have a high therapeutic potential in
breast cancer and other diseases. 

The other paradigm-shifting topic is that HPBCD-treatment might enhance cholesterol synthesis
on the contrary or in addition to the expected effect of cholesterol reduction.

The paper of Gaspar et al. [7] studied the impact of HPBCD on the aging biomarker lipofuscin,
which is a yellow-brown pigment, a product of oxidation of low density lipoprotein. Oxidative
stress causes significant increases in accumulation of both cholesterol and lipofuscin in cells.
The studies showed that HPBCD treatment reduced both cholesterol and lipofuscin in human
fibroblasts by reducing  LDLr  and  SREBP1 gene expression of aged cells, but no reduction in
cholesterol level was observed in lipofuscin-loaded young cells. It  was found that while the
cholesterol  depletion  is  beneficial  in  aged  or  ill  (NPC,  tumor,  etc.)  cells  with  accumulated
cholesterol content of abnormal level, it is harmful in young and healthy cells where depletion of
cholesterol from the cell membrane initializes enhanced synthesis and uptake of cholesterol to
normalize its level. These two opposite effects depending on the initial cholesterol content of
the cells point to the possible harmful effect of HPBCD treatment. 

Similar  age-dependent  effect  of  methyl  BCD treatment  was  published by Fülöp et  al.  [8]:
methyl  BCD induced a  significant  decrease  in  the  cholesterol  content  of  T  cells  of  elderly
subjects whereas it was increased in T cells of young subjects. These results suggest a role for
plasma membrane cholesterol in the regulation of the TcR signalling pathways with differential
effects related to aging.

A recent paper of Ebner et al. [9] published similar results: liver treatment with HPBCD in a
mouse model of NPC1 increased the cholesterol synthesis in addition to decreasing hepatic
cholesterol content. This controversy is explained by the enhanced proliferation upon HPBCD
treatment and that cholesterol was used for proliferation.

An  earlier  paper  of  Liu  et  al.  on  studies  of  HPBCD  treatment  of  NPC1  mice,  long-term
application of HPBCD in mice raised the de novo cholesterol synthesis (lipogenesis) compared to
the single application of HPBCD [10].

These  exciting  findings  show that  the  CDs’  effect  on living cells  is  still  far  from complete
understanding.
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Cyclodextrin News Retrospective
We wrote 10, 20 and 30 years ago

10 years  ago,  the  use  of  CDs  in  packaging  materials  was  reviewed.  Two strategies  were
compared, a.) when CD complexes are incorporated into the packaging material,  b.) when
“empty CDs” are present in the packaging films impregnated or grafted. In the first case CD is
applied  as  a  tool  for  controlled  release  of  active  compounds  when  complexes  of  e.g.
antibacterial  isothiocyanates,  antioxidant  a-tocopherol,  ripening  inhibitor  agent  1-
methylcyclopropene (1-MCP), dyes or flavors are used. In the second case the CD acts as
scavenger  for  impurities,  permeants,  or  other  undesirable  volatile  contaminants  such  as
plasticizers, aroma components or trichloroanisol. 

To exemplify true industrial applicability of this concept, Cellresin technologies offer a patented
CD-containing food packaging material containing an effective amount of ripening inhibitor of
ethylene  ensuring  prolonged  ripening  (i.e.  longer  shelf-life)  of  fruit  and  vegetables
(US8414989). Another example is a rodent-repelling trash bag (Mint-X) disclosed in recent
patent application (US2017071195) wherein the material of the bag contains essential oil (such
as  salicylic  acid  ester,  menthol,  mint  oil,  eucalyptus  oil,  camphor  oil)  CD complexes.  The
company promises that trash bags full of kitchen waste waiting overnight till the truck comes
to collect them are untouched by hungry cats, dogs, rats, squirrels, opossums, and raccoons. 

20 years ago, the topic of the editorial was written on the interaction of natural colorants with
cyclodextrins. The article focused on carotenoids and substances of similar chemical structure.
CDs,  especially  RAMEB  was  shown  to  increase  the  aqueous  solubility  of  these  guest
compounds, wherein the chemical stability of the dyes against thermal decomposition and UV
light was improved by alpha-CD in the highest extent.

30 years ago, Cyclodextrin News editorial reported on HPBCD as a newly introduced parenteral
excipient  and  Chiesi’s  Piroxicam-betadex  (Brexin)  as  the  first  CD-containing  oral  drug  in
Europe. Since then, the solubilizing property of HPBCD has been utilized in vast number of
applications,  moreover,  the  potential  therapeutic  effect  of  HPBCD  alone  may  offer  earlier
unimaginable perspectives in medicine. Brexin is  still  a successfully marketed product.  The
25th anniversary of  the product  introduction  was also  reported in  CD News 5 years ago:
https://cyclolab.hu/userfiles/cdn_2013_july.pdf
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