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Cholesterol-binding Cyclodextins for the
Treatment of Cystic Fibrosis and Other
Diseases with Pulmonary Surfactant

Dysfunction

Cystic Fibrosis (CF) is a life-threatening genetic disorder where thick mucus is built up in the
lungs, causing severe respiratory problems and complications (such as bacterial infection and
inflammation).

Pulmonary  surfactant  (PS)  is  a  surface  active  substance  lining  the  respiratory  system  of
mammalian lung secreted by type-II alveolar epithelial cells [1]. It is a thin lipid-protein film at
the air–liquid interface in the lungs. Its function is to dynamically control the surface tension of
the  boundary  surface  during  the  breathing  cycle.  The  surface  tension  of  water  is  about
70 mN/m, but in the lungs only about 25 mN/m, which is further decreased to near 0 mN/m
when the PS film becomes compressed at  the end of  expiration.  This  low surface tension
controlled by PS decreases the pressure difference between inflation and deflation of lung and
as a consequence reduces the work of breathing and prevent alveolar collapse at low lung
volumes. The surface forces help also to get rid of the inhaled particles. PS dysfunction results
in impaired ability of lung to expand, in decreased lung volume, reduced airway patency and
hypoxia. 

PS contains ~90% lipid and ~10% surfactant-specific protein. In addition to the main lipid
component, the zwitterionic and highly surface active dipalmitoyl phosphatidyl choline (DPPC)
(40–45%) [2], further disaturated and some unsaturated phosphatidyl cholines (~35–40%),
negatively charged phosphatidyl glycerol (5–10%) and 5–8% neutral lipid (mainly cholesterol)
build up the layer (Fig. 1) [3,4]. The proteins modulate the surface active properties of the
surfactant  lipids,  give  mechanical  strength  to  the  monolayer,  help  the  monolayer-bilayer
transition during expansion and contraction phases and play important role in innate defense
mechanisms of the lung [5,6].

Fig. 1 Molecular model of DPPC/cholesterol monolayer (expanded film) 
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Role of Cholesterol

The  role  of  cholesterol  is  maintaining  PS  in  a  relatively  fluid  state,  ensuring  its  lateral
organization and providing mechanical plasticity [7]. The cholesterol/phospholipid ratio changes
rapidly within a narrow range on physiological  stimuli.  For instance, the cholesterol content
changes with exercise to accommodate PS to the need of enhanced ventilation [4]. However,
extremely enhanced cholesterol levels were found in PS dysfunction,  such as in  acute lung
injury  (ALI),  acute  respiratory  distress  syndrome  (ARDS),  ventilation-induced  lung  injuries
(VILI) and also in cystic fibrosis (CF) [8–10].  

If PS contains elevated proportion of cholesterol (>20%) phase separation of the hydrophobic
fraction  of  PS  occurs.  On  the  other  hand,  decreasing  the  cholesterol  level  by  extracting
cholesterol using methyl BCD causes dramatic changes in the lateral structure and spreading
properties at  the air-liquid  interface [7].  A finely  tuned lipid  composition  (different among
species and among individuals) seems to be a prerequisite of the normal function.

Similarly to other biomembranes PS is also characterized by the coexistence of liquid-ordered
(Lo) and liquid-disordered (Ld) phases (raft hypothesis) in dynamically changing arrangement.

The rafts (more condensed phases surrounded by less condensed phase) can be visualized by
atomic force microscopy [11].  In the presence of elevated cholesterol level the number of
liquid-ordered microdomains increased while their size decreased from about 10 µm to 3–6 µm.
Removal of cholesterol by methyl BCD resulted in restored phase behavior: the number and
size of the microdomains became similar to the PS without cholesterol (5–10 µm) (Fig. 2). The
studies with  deuterated cholesterol  proved that  cholesterol  is  located mostly  within  the Lo
phases.

The presence of the domains, the coexistence of liquid-expanded and liquid-condensed phases
as  well  as  the  liquid-ordered  (Lo)  and  liquid-disordered  (Ld)  phases  makes  possible  the

regulation of surface tension [12].

Fig. 2 Scheme of the liquid-ordered microdomains in the contracted PS films untreated (A),
with added cholesterol (20 mol%) (B), and after removal of cholesterol with methyl BCD (C).

Effect of methyl BCD

Bovine lipid extract surfactant (BLES) used in the surfactant replacement therapies in neonatal
respiratory  distress  syndrome contains  almost  all  the  components  of  human  PS  but  only
1.5 mol% cholesterol [8]. Diseased lung was mimicked by addition of 20 mol% and 30 mol%
cholesterol  (related to  phospholipids)  either  dissolved in  organic  solvent  or in  the form of
water-soluble cholesterol (solubilized by methyl BCD). These cholesterol-enriched BLES films
were not able to reduce the surface tension below 16 mN/m upon compression. Treating them
with 40 mg/mL methyl BCD restored the surfactant function (near zero mean surface tension).
The function of BLES itself (not loaded with cholesterol) was not influenced by the presence of
methyl BCD [8].

In  another  experiment  BLES  was  supplemented  with  free  fatty  acids  and
lysophosphatidylcholine as typical compounds formed after oxidative stress in PS [13]. These
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compounds  inhibit  PS  function  in  dose-dependent  manner,  but  in  a  lower  extent  than
cholesterol. The inhibition was reversed by methyl BCD even in relative absence of cholesterol
suggesting that methyl BCD can sequester also non-steroidal lipids. 

In vivo experiments with PS-deficient rats (PS was removed by lavage of lungs with saline)
showed the importance of PS in arterial blood oxygenation levels [11]. The oxygenation level
remained low for the PS-deficient animals not receiving any treatment, while those treated with
BLES showed significantly  improved oxygenation  which  was  worse when  BLES was  added
together with 20 mol% cholesterol (Fig. 3). 

Fig.  3  Mean arterial  blood oxygenation  (PaO2)  of  PS-deficient  rats  treated with  20  mg/kg

phospholipid (BLES) and with 20 mg/kg phospholipid (BLES) + 20 mol% cholesterol (drawn
from the data in ref. 11)

In another experiment, rats were mechanically ventilated to induce VILI [14]. The rats in group
of  high-tidal  volume  (HTV)  ventilation  showed  lower  oxygenation  values  after  90  min  of
ventilation than the rats in the low-tidal volume group (LTV). The surfactant samples obtained
by lavage of lungs showed significant difference: PS of HTV group demonstrated much lower
surface activity compared to LTV group. Removal of cholesterol by methyl BCD from the PS
samples  of  HTV  group  improved  the  ability  to  reduce  the  surface  tension,  while  the
replacement of cholesterol again impaired the surface activity.

Recent  ex-vivo studies using human samples from pediatric patients in cystic fibrosis (26 CF
patients aged of 1–12 years) and from patients without this disease (9 patients aged of 1–15
years) (lung-healthy control) showed that the basic abnormality was the elevated cholesterol
concentration in the bronchial lavage fluid and the interaction between cholesterol and oxidized
phospholipids [13]. In cystic fibrosis the small airways are the region of the lung most severely
affected by inflammation and infection. The surface activity of PS obtained from the small
airways was markedly impaired compared to control samples: the minimum surface tension
was >12 mN/m for CF samples. The cholesterol content was much higher in CF patients (13%)
compared  to  lung-healthy  control  (5%).  Methyl  BCD significantly  improved  the  surfactant
action (near zero surface tension) in a majority of the samples.

Concluding remarks
The high affinity of methyl BCD toward cholesterol not only gives a tool to the researchers for
studying  the  effect  of  cholesterol  on  the  function  of  PS,  but  also  seems  to  offer  a  new
therapeutic strategy for the treatment of pathologies with PS dysfunction. A patent application
describing the method has been filed:  By removing  cholesterol  from pulmonary surfactant
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through the addition of a cholesterol-sequestering agent, oxidative damage to the surfactant is
mitigated. It was also shown that normal function can be restored by methyl-beta-cyclodextrin
to  dysfunctional  surfactant  removed  from  the  lungs  of  children  with  cystic  fibrosis  and
noncystic fibrosis bronchiolitis [15].
Although in the Scopus there are 260 papers on CDs beneficial effects on pulmonary delivery of
various drugs, we at CycloLab are not aware of any marketed, CD-enabled formulations for
pulmonary administration. One of the possible explanations that CDs themselves are absorbed
through  the  respiratory  mucosa:  when  BCD,  DIMEB  and  HPBCD  were  administered  by
intratracheal  instillation  to  rabbits,  the  bioavailability  of  CDs  was  66%,  74%  and  80%,
respectively [16]. In vivo, it was demonstrated that short-term exposure to inhaled HPBCD,
GCD and  RAMEB solutions  are  non-toxic  after  assessing  bronchoalveolar  lavage,  lung  and
kidney histology, bronchial responsiveness to methacholine and blood urea [17]. 
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