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CDs in Artificial Fertilization of Animals

Introduction

Artificial  insemination of farm animals  is  very common in today's animal  husbandry in the

developed world, especially for breeding dairy cattle (75% of all inseminations) and swine (up

to 85% of all inseminations). It is used for breeding buffaloes, sheep, goats, horses, dogs and

a variety of laboratory animals as well. It allows a male to inseminate a much larger number of

females and to use the genetic material from males separated by distance or time, to control

the paternity of offspring, to overcome physical breeding difficulties, to synchronize births, to

avoid injury incurred during natural mating and to avoid the need to keep a male in small

herds [1].

Semen is collected, diluted, then cooled or frozen. To allow the sperm to remain viable during

and after  it  is  frozen,  the semen is  mixed with  a solution  containing  various  ingredients.

Glycerol removes water from the sperms and thus prevents the formation of ice crystals during

freezing. Sodium citrate, fructose and egg yolk are also typical cryoprotectants. A diluent is

used to  allow  the  semen from a  donor  to  impregnate  more females.  Antibiotics,  such  as

penicillin, streptomycin, are sometimes added to the sperm to control some bacterial venereal

diseases.  Before  the  actual  insemination,  estrus  may  be  induced  through  the  use  of

progestogen and Prostaglandin F2α.

Cyclodextrins can not only improve the pharmacological properties of the antibiotics, hormones

and prostaglandins but can modify the cell membrane via the interaction with cholesterol. Such

modification plays important role both in the freezing-thawing process and fertilization.

Mechanism of fertilization

The schematic  structure of the sperm cells  can be seen in Fig.  1. The head of the cell  is

covered by acrosome, which helps making way for the sperm cell through the jelly shell of the

egg (zona pellucida) to get to the cell  membrane of the egg/oocyte, where the fertilization

takes place (Fig. 2). The first step is the capacitation, which involves the destabilization of the

acrosomal sperm head membrane allowing greater binding between sperm and oocyte. This

change is facilitated by the removal of steroids (e.g. cholesterol) and non-covalently bound

epididymal/seminal  glycoproteins. This happens normally in uterin by secreting cholesterol-

binding albumin and other enzymes. The next step is the acrosome reaction, which means

enzymatic hydrolysis of the glycoproteins, the main constituents of the jelly shell of the egg.
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The acrosomal reaction does not begin until the sperm comes into contact with the oocyte's

zona pellucida.  The fertilization  starts  when spermatozoa binds  to  the extracellular  matrix

coating of the oocyte. A specific sugar sequence (sialyl-LewisX) helps in targeting  [2]. Upon

coming into contact with the zona pellucida, the acrosomal enzymes begin to dissolve and the

actin filament comes into contact with the zona. Once the two meet, a calcium influx occurs,

causing a signaling cascade  [1]. In this complicated process the lipid raft protein caveolin-1

also plays a role [3].

Figure 1: The schematic structure of sperm cell

Figure 2: The process of fertilization: the maturated (capacitated) sperms arrive to the egg,

bind to zona pellucida (the outer glycoprotein layer of the oocytes/eggs surrounding the

plasma membrane), the fastest sperm penetrates the zona pellucida by the acrosome reaction

(enzyme reactions enabling the sperm to break the membrane of the egg) and by the zona

reaction the fusion of the membranes of the two cells occurs making possible the fertilization

Effect of CDs on the membrane of sperm cells and eggs

Membrane raft of eggs is involved in fertilization. Cholesterol removal by using methyl BCD

(MeBCD) induced a decrease of the fertilization rate and index of mice. Cholesterol repletion

recovered the  fertilization  ability  of  cholesterol-depleted  oocytes,  indicating  reversibility  of

these effects [4]. Raft disruption by cholesterol depletion disturbed the subcellular localization

of the signal molecule c-Src kinase playing an important role in the fertilization [5].

While  cholesterol  removal  of  oocytes  is  detrimental  that  of  the  sperm  cells  might  have

beneficial effects.
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In protein-free medium (Krebs-Ringer bicarbonate medium) no fertilization of mouse eggs was

observed  in vitro, however, fertilization occured when spermatozoa were preincubated with

MeBCD and in a smaller extent with HPBCD (41% vs. 14% at 0.75 mM concentration). When 4

mg/mL  bovine  serum  albumin  (BSA)  was  present  66%  fertilization  rate  was  obtained.

Destabilization of the acrosome membrane via cholesterol efflux is the first step of capacitation

of  sperms.  After  incubation  of  mouse  spermatozoa  for  90  min  in  0.75  mM MeBCD,  the

cholesterol content of the spermatozoa was significantly lower than that of the control (2.3 vs.

4.1  nmol  unesterified  cholesterol/107 sperm).  The  proportion  of  acrosome-reacted

spermatozoa,  however,  was  not  different  between  MeBCD  treatment  and  the  control.

Therefore, MeBCD increased capacitation rather than the acrosome reaction of spermatozoa

[6]. Similar results were obtained for boar spermatozoa [7], rabbit  [8] and dromedary camel

[9].

Pre-incubation of bovine sperm with MeBCD affected viability and capacitation status of the

sperm and promoted also fertilization  in vitro. Embryos derived from oocytes fertilized with

sperm pre-incubated with MeBCD developed normally [10].

In  other  experiments,  compared  to  the  non-MeBCD-treated  control,  MeBCD  treatment

increased  the  percentage  of  acrosome-reacted  pig  spermatozoa at  thawing  and  2  h  after

incubation in fertilization medium (P < 0.01). Treatment with MeBCD also increased sperm-

penetration rate, number of spermatozoa in oocytes, and fertilization efficiency [11].

MeBCD improved the fertilizing ability of frozen/thawed C57BL/6 sperm (the fertilization rate

for frozen/thawed sperm of this strain of genetically engineered mice is poor). The embryos

with  frozen/thawed  sperm  showed  good  developmental  potential,  and  the  offsprings  had

normal fertility. The efflux of cholesterol from frozen/thawed sperm was increased by MeBCD in

a dose-dependent manner and occurred much earlier and to a greater extent than with bovine

serum  albumin  [12].  Using  MeBCD  during  sperm  preincubation  enhanced  fertility  of

frozen/thawed C57BL/6 mouse sperm [13,14].  A new thawing method was developed that

involves  selective  collection  of  motile  sperm and  a  preincubation  medium  containing  also

MeBCD that enhances capacitation [15].

To become fertilization competent, mammalian spermatozoa undergo changes in the female

reproductive tract termed capacitation. Capacitation is associated with an increase in proline-

directed phosphorylation linked to cholesterol efflux in the sperm [16]. Cholesterol efflux was

achieved by bovine serum albumin (BSA) or HPBCD in these experiments with mouse sperms.

Fertilization stimulated tyrosine phosphorylation of signaling proteins of eggs in Xenopus [17].

Pretreatment of eggs with MeBCD led to a decrease in cholesterol and sperm-induced tyrosine

phosphorylation in the membrane resulting in inhibition of sperm-induced Ca2+ efflux and first

cell  division  [18].  The fertilizing  state  was correlated with  an increase of  protein  tyrosine

phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase

in tyrosine phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity.

Phosphorylation and fertilization could be promoted by addition of MeBCD. 

Edited and produced by: CYCLOLAB – page: 3



VOLUME 29. No 1. 

Beneficial effect of cholesterol supplementation

The  mammalian  spermatozoa  are  sensitive  to  cold  shock.  Irreversible  damage  occurs  to

spermatozoal  membranes, during the phase transition,  when spermatozoa are cooled from

room temperature to 5 oC. Freezing damage is due to changes in membrane lipid composition,

such  as  cholesterol  depletion  [19].  Some  of  this  damage  can  be  ameliorated  by  adding

cholesterol to the membrane.

Mocé et al. have recently reviewed the effect of cholesterol supplementation on the various

properties of sperm cells [20]. Adding cholesterol-loaded cyclodextrins (CLCs) to spermatozoa

prior to freezing, increases cell cryosurvival. Both MeBCD and HPBCD work well as carrier of

cholesterol. The cholesterol induced stabilization of the plasma membrane was demonstrated

for the sperms of various animals including bull, stallion (horse), donkey, goat, ram (sheep),

boar (swine) and mouse.

Both motility and viability of the CLC-treated sperms are improved after freezing and thawing.

On the other hand,  the  CLC treatment  had no beneficial  effect  on sperms which  are not

sensitive for cold shock, such as rabbit and rainbow trout, as they have higher cholesterol

concentration in the membrane [21].

Concerning the functionality of sperm after freezing and thawing of the CLC-treated semen the

percentage of motile sperms was enhanced even after incubation at 38.5  oC (mimicking the

conditions of the female reproductive tract). In addition to the enhanced tolerance to heat also

the osmotic tolerance was improved. Moreover, the membrane fluidity  and permeability  for

cryoprotectants, such as glycerol, ethylene glycol were similar or enhanced [20].

In  their  review  Mocé  et  al. emphasized  that  the  beneficial  effect  of  CLC  is  attributed  to

cholesterol  and  not  the  CD itself,  as  treating  the  sperm cells  with  MeBCD alone  prior  to

freezing decreased the cryosurvival  owing to the cholesterol  removal  from the membranes

caused by the CD [20].

In spite of the improved quality of the sperms treated with CLC the fertility rate was usually

not enhanced (similar or lower). The mechanism is not fully understood. The CLC treatment

might change not only the cholesterol content in the lipid bilayer but the other components

(phospholipids) necessary for the interaction with the female reproductive tract.

The initial step of capacitation is the loss of cholesterol. As the CLC-treated cells preserve their

enhanced cholesterol content after thawing their capacitation and timing for acrosome reaction

were retarded for stallion sperms but unretarded for bull sperms. It is obvious that the sperms

with membrane of higher stability  need more time for capacitation and acrosome reaction.

That can partly explain the failure in enhancing the fertility rate with CLC-treated cells [20]. 

CLCs can be added to neat semen, making this technology feasible for practical application

using current cryopreservation techniques  [22]. CLC and 0.4 M sucrose protected the goat

epididymal sperm against freezing-induced damages even without the usual cryoprotectants

[23]. Recent studies aimed at optimization of the CLC treatment [24].
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Conclusions

Cholesterol incorporation into sperm membranes improves the quality of cryopreserved semen

by increasing the sperm membrane stability  and fluidity  at  low temperatures. Despite  the

beneficial  effect  of  cholesterol  addition  on  sperm  quality,  studies  demonstrate  that  the

presence  of  large  amounts  of  cholesterol  in  the  plasma  membrane  interferes  with  the

physiological process of sperm capacitation and might be detrimental to frozen sperm fertility.

On  the  other  hand,  applying  MeBCD in  the  preincubation  medium  of  the  thawed  sperms

improves capacitation and fertility rate.

The combination of these two treatments (cholesterol supplementation with cholesterol-loaded

MeBCD prior to freezing and cholesterol removal with MeBCD after thawing) could be beneficial

for assisted reproductive technology and animal breeding industries.
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