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Fighting against Bacterial Resistance to
Penicillins with CDs

Introduction

Penicillin  antibiotics  were  amongst  of  the  earliest  discovered  drugs  effective  against

bacterial infections. Penicillins are widespread in nature and lethal to growing bacteria because

they inhibit  their  cell  wall  synthesis.  The penicillin  was accidentally  discovered by Scottish

scientist and Nobel laureate Alexander Fleming in 1928. Penicillins are still widely used today,

though  many  types  of  bacteria  developed  resistance.  It  has  become  a  major  healthcare

problem  nowadays  that  bacteria  resistant  to  commonly  used  antibiotics  infect  large

communities [1]. Bacteria have been extremely creative in developing various mechanisms of

resistance.  The  simple  structure  of  bacterial  DNA enables  fast  mutations  adapting  to  the

environment. 

All penicillins belong to β-lactam antibiotics. The common element of the structure is the 4-

membered β-lactam ring. The structure of some representatives of the penicillin family can be

seen in Fig. 1.
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Fig.1: The structure of penicillin G (benzylpenicillin) (A), penicillin V (phenoxymethylpenicillin)

(B), ampicillin (C), amoxicillin (D), dicloxacillin (E), meticillin (F). Me is usually Na or K
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In the case of penicillins  the resistance is ascribed to the cleavage of β-lactam ring by

penicillinases (class A β-lactamases) [2]. That is why penicillins are used in combination with

agents inhibiting β-lactamases. In this editorial  we overview how various CDs influence the

stability of the β-lactam ring.

Catalysis and inhibition of ring opening by CDs under various conditions

CD complexation may either catalyze or inhibit the cleavage of β-lactam rings depending on

the pH.

Under  weakly  alkaline  conditions  both  -  and βCD accelerate  the β-lactam cleavage of

various penicillins as much as 20-80 fold compared to alkaline hydrolysis without CDs [3,4,5].

The NMR study of penicillin V/CD complex proved that the phenyl ring is included into the

cavity leaving the β-lactam ring exposed to the alkaline solution [5]. The reaction proceeds in

several consecutive steps: first the penicillin/CD complex is formed, next the βCD alkoxide ions

attack  the  β-lactam  ring,  forming  an  acyl  intermediate,  and  then  the  intermediate  is

hydrolyzed and the product is released [3,4]. The rate of acceleration depends on the structure

of the penicillin. These inclusion complexes can serve as a model for the β-lactamase enzyme-

substrate complex, so the use of CDs as biomimetic  models was suggested. This  catalytic

effect was demonstrated also in vivo using βCD-producing alkalophile (ATCC 21594) [6]. These

bacteria  show  penicillin  resistance  and  βCD-mediated  β-lactamase  activity.  This  catalytic

activity might contribute to the antibiotic resistance of a bacterium that can synthesize βCD. 

Under neutral conditions lower catalytic effect was observed: the hydrolysis of penicillin V

was accelerated by βCD only 5 fold. Other βCD derivatives, however, exhibited better catalytic

activities under both neutral and alkaline conditions. For instance, amino-βCD had 165 fold

acceleration of the hydrolysis of penicillin V at neutral pH [7]. ROESY NMR studies proved that

ampicillin, amoxicillin and dicloxacillin formed inclusion complexes with β- and CD and their

anionic derivatives, heptakis(6-oxycarbonylethylthio-6-deoxy)-βCD (OCET-βCD) and octakis(6-

oxycarbonylethylthio-6-deoxy)-CD (OCET-CD, commercialized  as Sugammadex) at  neutral

pH, but the complexation had no influence on the hydrolysis [8].

On the other hand, under weak acidic conditions the degradation of penicillins was slightly

retarded by βCD [9]. Also - and CDs were found to reduce the acidic hydrolysis of penicillin G

the latter showing higher protection [10]. The complex association constants of penicillin G/CD

systems at pH 5.7 were calculated 2.6, 30 and 179 M-1 for -, β- and CDs, respectively. The

high stability of the CD complex was ascribed to the fact that penicillin G was shown to form

dimer, which can be incorporated into CD, but not into - and βCDs. 

A  single-molecule  investigation  of  pH-  and  voltage-dependent  reversible  interactions

between ampicillin  and  CDs monitored the ionic  current signatures across an  -hemolysin

protein entrapping a CD molecule [11]. It was found that at close to neutral pH more unstable
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ampicillin/CD complexes are formed as compared to that formed at acidic pH.

For dicloxacillin  the highest stability  constants of the inclusion complexes were obtained

also with CD compared to -, βCDs and HPBCD at pH 1 and 2 while at pH 3 HPBCD was found

the best stabilizer [12].

HPBCD showed stabilizing effect on penicillin G under strong acidic conditions (pH 2.2) [13].

Penicillin G complexed with HPBCD was degraded approx. 9-fold slower than the uncomplexed

drug. Hydroxyethyl βCD (HEBCD) behaved similarly [14]. HPBCD was found to form two types

of complexes with a 1:1 stoichiometry with ampicillin,  amoxicillin and penicillin  G in strong

acidic  solutions (where the drugs are cations):  either the phenyl  ring was included or the

penam (β-lactam ring fused to a 5-membered ring) [15,16]. The latter, however, had lower

association constants. At pH 4.5 (where the drugs are in zwitterionic form), only the complex

with inclusion of phenyl ring was formed according to NMR investigations. 

Molecular dynamic simulation studies of these two types of complexes for βCD gave similar

results:  a  complex with  the hydrophobic  phenyl  moiety of ampicillin  included through the

narrow rim of βCD is the preferred arrangement for the 1:1 complex [17]. The structures with

the polar  moiety of ampicillin  inside the cavity were not stable, even when two CDs were

considered in a 2:1 complex. The hydrogen bonds between the ionized carboxyl group on the

penam ring and the secondary hydroxyl  groups of another βCD contribute to the complex

association [18].

Effect of CDs on the enzymatic hydrolysis of penicillins

The elongated cavity of OCET-CD (Sugammadex), which was found to form 1:2 guest :

host  complexes,  resulted  in  superior  protection  against  enzymatic  hydrolysis  [7].  In  the

presence of  β-lactamase  enzymes  ampicillin  complexed  with  OCET-CD degraded twice  as

slowly as the free drug. 

Another approach to avoid the cleavage by β-lactamase is the conjugation of penicillins,

such as methicillin to CD [19].

Effect on the antimicrobial activity

The bioavailability of ampicillin was improved when administered to humans in the form of

βCD complex [20].

The 1:2 penicillin/CD complex resulted in enhanced antimicrobial activity: the concentration

necessary to inhibit 50% of bacterial isolates of the same strain (MIC50) decreased at least to

the half for both βCD and HPBCD complexes [21]. Even the highest resistance to ampicillin

shown by Klebsiella spp. was reduced (Fig. 2). Similar results were obtained for the amoxicillin

complexes.  In  these  experiments  Staphylococcus  aureus was  especially  sensitive  to  both
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ampicillin and amoxicillin (MIC50 2 mg/mL). This high antimicrobial effect was doubled when

the  drugs  were  applied  in  complexed  form  (MIC50 1  mg/mL  for  both  βCD  and  HPBCD

complexes of both drugs). The enhanced antimicrobial activity is explained by two reasons: i)

β-lactames in complexed form do not fit into the active site of β-lactamases; ii)  complexed

drugs  can penetrate  the bacterial  cell  wall  faster  than  the free drug.  The faster diffusion

through  the  enterobacterial  outer  membrane  might  be  the  consequence  of  the  changed

membrane fluidity upon the effect of CDs on the membrane lipid components [22]. On the

other  hand,  it  was  suggested  that  porins  specific  for  cyclodextrins  detected  in  Klebsiella

oxytoca and  Bacillus subtilis strains could be present in the bacteria studied [23,24]. These

pore-forming membrane proteins (CymA and CycB, respectively)  are able to bind CDs and

behave as transporters helping CDs to get through the cell wall.

Fig. 2: Minimum inhibitory concentration (MIC50) at which 50% of bacteria are inhibited in the

presence of free ampicillin (AMP), and its 1:2 complex with βCD and HPBCD [21]

A  designed  βCD  derivative,  per-6-(4-methoxylbenzyl)-amino-6-deoxy-βCD  HCl  salt

(MBABCD), was synthesized. The formation and the conformation of 1:1 (molar ratio) complex

with methicillin were determined by NMR. The in vitro MIC values of methicillin combined with

MBABCD against two methicillin-resistant  Staphylococcus aureus strains were decreased 30-

60-fold, compared to those for the antibiotic alone, and 1:1 methicillin/HPBCD complex [25]. 

Drug formulations

Several  examples  of  drug  formulations  containing  penicillins  have  been  studied.  Some

examples:

• Sustained-release  formulations  containing  penicillins  included  in  CD  polymer  were

developed [26]. 
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• Controlled release formulations were obtained by attaching ampicillin and amoxicillin to

βCD-polyethylene glycol conjugate [27]. 

• Gels containing β-lactam antibiotics, such as penicillin G included in CDs were patented

as surgical  devices, e.g. a protective corneal mask or ablatable mask useful  in laser

keratectomy [28].

The potential of sugammadex to selectively remove allergenic drugs, such as penicillins and

cephalosporins, was suggested by Baldo et al. [29]. Sugammadex is used in anaesthesia as an

innovative and useful agent for rapid reversal of rocuronium-induced neuromuscular block by

sequestering the drug as an inclusion complex. The removal of pencillins and cephalosporins in

cases of difficult-to-reverse anaphylaxis to these drugs would be of great importance.
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