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Cyclodextrin-Modified Iron Oxide
 

Iron oxide is common in the nature. There are several forms of minerals containing ferrous

and ferric oxides often mixed with hydroxides. More than 90% mined is used for steel

production. The application as pigment is also important.

Recently new applications emerged: iron oxide in the form of nanoparticles (1-100 nm) has

superparamagnetic properties and useful for terabit magnetic storage devices, catalysis,

sensors, and high-sensitivity biomolecular magnetic resonance imaging (MRI) for medical

diagnosis and drug delivery. These nanoparticles are effective sorbents useful also in water

purification. The main advantage of these nano-sized magnets is the simplicity of the usage

and efficiency (they can be targeted, collected by external magnetic field). In this literature

review, the potential of cyclodextrins for improving the characteristics of iron oxide has been

overviewed.

Catalyst

Oxidation of 2,4,6-trinitrotoluene (TNT) by hydrogen peroxide is catalysed by iron-containing

minerals (Fenton reaction). The catalytic effect is higher with the minerals of higher iron

content. Magnetite, a mineral (ferrous-ferric oxide) of over 70% iron (Fe II and Fe III) content

was found effective catalyst1. The efficacy was further enhanced in the presence of

carboxymethyl β-cyclodextrin (CMBCD), which enhanced the dissolved iron concentration.

Compared to other iron-chelating agents, such as EDTA the degree of TNT mineralization was

twice higher in the presence of CMBCD than in the presence of EDTA. This enhancement could

in part be due to the increase in dissolved iron concentrations in the bulk solution in addition

to the enhancement of the solubility (availability) of the poorly soluble contaminants. Similar

results were obtained for polycyclic aromatic hydrocarbons (PAHs) and polychlorinated

biphenyls (PCBs) using CMBCD2 as well as for TNT/methyl BCD3, pentachlorophenol

(PCP)/CMBCD4, trichloroethylene (TCE)/HPBCD5,6 TCE/RAMEB7, benzene/HPBCD8 systems.

BCD conjugated Fe3O4 magnetic nanoparticles (Figure 1A) were an efficient microvessel

system for nucleophilic substitution reaction of benzyl halides in water. No evidence for the

formation of by-product, such as isothiocyanate or benzyl alcohol was observed and the

products were obtained in pure form without further purification. The nanomagnetic catalyst

could be readily separated from solution via application of an external magnet, allowing
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straightforward recovery and reuse10.

Silica coated with iron oxide and modified by CD or its derivatives or complexes is an efficient

catalyst to oxidize carbon monoxide (CO) to carbon dioxide11. The catalyst is useful in the

apparatus used for the removal of CO from fuel cell air intake and from enclosed space. 

A magnetically separable catalyst was synthesized via a carbodiimide activation process to get

CD-functionalized core-shell nanoparticles (Fe3O4/SiO2/CMBCD) (Figure 1B). The catalyst

presented high activity for selective oxidation of various alcohols with NaOCl as oxidant and

water only as the solvent9. 

Iron oxide/titanium oxide core-shell nanoparticles modified by CDs are efficient photocatalyst

for wastewater treatment. The amorphous TiO2 shell accelerates the degradation and

mineralization of the organics, such as bisphenol A and dibutyl phthalate, under UV

illumination, and the magnetism associated with the crystalline Fe3O4 core allows the

magnetic separation from the dispersion once photocatalytic degradation is complete. The

tethered CDs are responsible for the aqueous dispersibility of the nanoparticles and their

hydrophobic cavities for the capture of the organic pollutants that may be present in water

samples12.

High conversion and enantioselectivity were achieved by Candida rugosa lipase encapsulated

by silica-functionalized BCD grafted on the surface of iron oxide nanoparticles13. The

hydrolysis of racemic Naproxen methyl ester resulted in 98% S- Naproxen.

 

Sensors and analytical applications

An amperometric sensor based on coating glassy carbon electrode by iron oxide in the

presence of BCD was developed for the analysis of bisphenol A14. Enhanced (two orders of

magnitude) linearity, improved (sub-micromolar) detection limit, and reproducibility make this

sensor potentially exploitable for analysis of real samples, such as food and beverages. 

Mono-6-formyl-BCD moieties were attached to (3-aminopropyl)triethoxysilane-coated

superparamagnetic Fe3O4 nanoparticles (Figure 1B) and the oligosaccharide-capped core-shell

nanoparticles were employed as support for the supramolecular immobilization of two

different adamantane-modified enzymes, tyrosinase and xanthine oxidase, through host-guest

interactions. The enzyme-modified nanomaterial was further used to magnetically modify

carbon paste electrodes for constructing amperometric biosensors toward cathecol and

xanthine15. 

Iron oxide-silica core-shell particles modified with CMBCD can be used for sample

pretreatment and analysis of samples containing nucleosides and amino acids, respectively.

The immobilized CMBCD gives the potential for selective binding of guanosin compared to
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adenosine and enantiomers of amino acids (Tyr, Trp, Phe)16,17.

 

Drug delivery and magnetic resonance imaging (MRI)

BCD-functionalized magnetic Fe3O4 nanoparticles have been prepared by a two-step

anchoring route based on particle prefunctionalization with a phosphonic monolayer, which

acts as a covalent linker between the nanoparticles and BCD (Figure 1A). The ability of

nanoparticles to carry and slowly release some drugs was tested by using diclofenac sodium

salt as a model18. 

Silica-iron oxide hybrid nanoparticles were modified either with fluorescent moieties for

imaging, or various functionalities for targeting or by CDs to improve the drug binding and

stability. For instance, CD-modified nanoparticles (Fe-Si-CD-PEG) are an excellent platform for

anticancer drug delivery and MR imaging19. The glutathione (GSH)-responsive CD

gatekeepers on the surface of the hybrid nanoparticle play a key role in accommodating

anticancer drug molecules in the pore of the silica shell without premature release until CD

gatekeepers are cleaved by GSH. It was confirmed, from an in vitro study with the A549 cell

line, that doxorubicin (DOX) was released from the internalized carriers due to GSH-mediated

cleavage of the CD gatekeeper resulting in apoptotic and clonogenic cell death. The

accumulation of Fe-Si-DOX-CD-PEG in the tumors was detected by in vivo MR imaging. The

growth of the tumor in vivo was effectively suppressed by the intravenously injected Fe-Si-

DOX-CD-PEG. 

Badruddoza et al. synthesized silica-iron oxide hybrid core-shell magnetic nanoparticles with

quadrupole functionalities by anchoring fluorescent and targeting moieties together with CD

(fluoresceinyl isothiocyanate, FITC, folic acid, FA and CMBCD, Figure 1C)20. This smart

theranostic system was useful for simultaneous fluorescence imaging, magnetic manipulation,

cancer cell-targeting and hydrophobic drug (retinoic acid) delivery. 

A novel approach to thermo- and magnetoresponsive drug delivery was presented by Marten

et al., using magnetic nanoparticles decorated with a BCD-containing polymer brush shell

(Figure 2B). The iron oxide based magnetic cores with a diameter of 10-12 nm can be used for

remote controlled magnetic heating. The polymer shell is created by atom transfer radical

copolymerization of various methacrylates and the methacrylate functionalized BCD monomer.

The BCD units are responsible for a thermosensitive complex formation with drugs21. Another

variety of the polymer shell is gum arabic fixed on the iron oxide surface22. BCD is grafted to

this polymer shell with a diisocyanate. The controlled release of retinoic acid from these

nanoparticles was observed.
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Figure 1 Schemes of the various CD-modified iron oxide nanoparticles: CDs attached to the

iron oxide core (A), to the iron oxide-silica core-shell (B), iron oxide-silica core shell

nanoparticles with multiple functionalities (fluorescent, targeting and CD moieties) (C), iron

oxide coated with polyrotaxane (D)

Superparamagnetic iron oxide nanoaggregates (SPIONs) were surface-coated with amine

functionalized polyrotaxane and were proposed as a carrier for inhalation dry powders (Figure

1D). Polyrotaxane is primarily composed of BCD threaded on the block copolymer,

poly(propylene glycol) bis(2-aminopropylether)23 or polyethylene oxide-polypropylene oxide

copolymer (Pluronic)24. These aggregates in combination with a target-directed magnetic

gradient field showed promise for targeted pulmonary deposition of anticancer drugs. If

loaded with a pharmaceutical active ingredient, these particles may be useful for treating

localised lung disease such as cancer nodules or bacterial infectious foci25.

Starlike polymers with multiple dextran arms were designed and developed by attaching

dextran to a BCD core through click chemistry. Next, starlike dextran was modified with

aliphatic chains and these amphiphilic polymers can self-assemble into nanoscale micelles,

which can encapsulate multiple superparamagnetic iron oxide nanoparticles (Figure 2A). The

resulting nanocomposites have a high relaxivity under a clinical MRI scanner. Further, dual

functional probes were developed by loading both superparamagnetic iron oxide nanoparticles

and small molecule anticancer drug doxorubicin into polymeric micelles. Multidrug-resistant

breast cancer cells MCF-7/Adr treated with these probes can be characterized under MRI26.
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Sorbent

The main advantage of using iron oxide as sorbent in waste water purification is that magnetic

nanoparticles can be easily separated from the waste water by applying magnetic field. The

pollutants sorbed on the surface can be removed, and the recovered nanoparticles can be

used in several cycles. Modifying the surface of the magnetic nanoparticles with CDs result in

enhanced sorption of organic/inorganic pollutants.

Sorbent for removal of toxic substances from blood during hemoperfusion is one of the

potential applications of such magnetic nanoparticles modified with CDs. Diazepam, as model

toxin was removed from blood using BCD-conjugated magnetic nanoparticles27.

Grafting CD to the surface of magnetite nanoparticles via functionalization with [3-(2,3-

epoxypropoxy)propyl]trimethoxysilane moieties resulted a sorbent able to remove various

dyes, such as Direct Blue 15, Evans Blue, and Chicago Sky Blue from effluents28.

CMBCD was grafted on the surface of magnetic nanoparticles covered by silica shell via

carbodiimide method29,30. The resulting modified nanoparticles showed enhanced sorption of

methylene blue and metals (Cu, Pd, Ni and Cd) from aqueous solutions. The maximal sorption

capacity reached 278, 47 65, 28 and 13 mg/g, respectively. Enhanced CD concentration can

be achieved on the surface of the particles by using BCD polymer prepared by cross-linking

CMBCD with epichlorohydrin (Figure 2B)31.

BCD modified multiwall carbon nanotubes/iron oxide is a promising magnetic material for the

preconcentration and separation of toxic metals, such as Cu and Pb as well as organic

pollutants (1-naphtol) from aqueous solutions in environmental pollution cleanup32,33.

Figure 2. Scheme of iron nanoparticles embedded in starlike dextran polymer substituted with

alkyl groups (A) and iron oxide-silica core-shell nanoparticles grafted with CD polymer (B)
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